首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The structural parameters of the (2Σ+//Cv)-YbF, (1A1//C2v)-YbF2, (2A2//D3h)-YbF3, (1Ag//D2h)-YbF2Yb, (1Ag//C2h)-FYbF2YbF, (1A1//C2v)-FYbF2YbF, (1A1//C2v)-YbF2YbF2, (3B3u//D2h)-F2YbF2YbF2, (2A′//Cs)-FYbF2YbF2, and (3B2//С2v)-F2YbF2CeF2 molecules have been determined. Disproportionation of ytterbium monofluoride (2YbF → YbF2 + Yb + 0.46 eV) is less exothermic than dimerization (2YbF → YbF2Yb + 2.10 eV). The bond energy of the ytterbium difluoride molecules in the trans dimer (2.93 eV) exceeds those in the cis dimer (2.86 eV) and the coaxial dimer (1.66 eV). Ytterbium trifluoride dimerizes exothermically (2.95 eV) without spin pairing. The dipole and quadrupole moments of the molecules as well as the charges and spin populations of the atoms and the valence electron configurations of the lanthanides have been calculated.  相似文献   

2.
The structural stabilities, bonding nature, electronic properties, and aromaticity of bare iridium trimers \(\rm{Ir}_3^{+/-}\) with different geometries and spin multiplicities are studied at the DFT/B3LYP level of theory. The ground state of the \(\rm{Ir}_3^{+}\) cation is found to be the 3A2 (C2v) triplet state and the ground state of the \(\rm{Ir}_3^{-}\) anion the 5A2 (C2v) quintet state. A detailed molecular orbital (MO) analysis indicates that the ground-state \(\rm{Ir}_3^{+}\) ion (C2v, 3A2) possesses double (σ and partial δ) aromaticity as well as the ground-state \(\rm{Ir}_3^{-}\) ion (C2v, 5A2). The multiple d-orbital aromaticity is responsible for the totally delocalized three-center metal-metal bond of the triangular Ir3 framework. \(\rm{Ir}_3^{-}\) (C2v, 1A1) structure motif is perfectly preserved in pyramidal Ir3M0/+ (Cs, 1A′) and bipyramidal \(\rm{Ir}_3M_2^{+/3+}\) (C2v, 1A1) (M = Li, Na, K and Be, Ca) bimetallic clusters which also possess the corresponding d-orbital aromatic characters.  相似文献   

3.
A density functional theory investigation on the structural and bonding properties of B3S n ?/0 (n = 2–4) series has been performed. Based on B3LYP and CCSD(T) calculations, we present the linear D ∞h B3S2 ? (1, 3Σg) and D ∞h B3S2 (2, 2Πu), the Y-shaped C 2v B3S3 ? (3, 1A1) and C 2v B3S3 (4, 2B2), and perfectly planar structures C 2v B3S4 ? (5, 1A1) and C 2v B3S4 (6, 2B2) that contain rhombic B2S2 rings. The 16 ground-state structures are planar with linear “B–B–B” core, in which the first and the second S atoms prefer to bond terminally to the terminal B, and the third S atom bonds to the center B, however, when the third S atom is added with the fourth, the atoms tend to be in the bridging positions of two adjacent B atoms. The growth pattern of B3S n ?/0 (n = 2–4) clusters helps to understand the structural properties of the other small boron sulfide clusters. Bonding analyses reveal that a dual or single three-center one-electron (3c–1e) π hypervalent bonds located over the “B–B–B” core of D ∞h B3S2 ? (1) and B3S2 (2), respectively. While C 2v B3S4 ? (5) and B3S4 (6) with rhombic B2S2 rings as the center with –BS and –S units all possess 4c–4e bonds (o-bonds) in the rhombic B2S2 rings.  相似文献   

4.
Oxepin and azepin are heterocyclic compounds with a seven-membered ring, which are present in the main skeleton of many anti-depressive drugs. Planar configuration instability due to the pseudo Jahn-Teller effect (PJTE) in oxepin, azepin and six their halogen substituted derivatives were investigated as an original PJTE study. Optimization and the following frequency calculations in these two series illuminated that all of these eight compounds were unstable in high-symmetry planar (with C 2v symmetry) configuration and their structures were puckered to lower C s symmetry stable geometry. Moreover, the vibronic coupling interaction between 1 A 1 ground and the first 1 B 1 excited states via (1 A 1 + 1 A 1 + 1 B 1) ? b 1 and (1 A 1 + 1 B 1 + 1 A 1 ) ? b 1 PJTE problems were the reasons for the symmetry breaking phenomenon and non-planarity of the seven-member ring in those series. Finally, numerical fitting of the adiabatic potential energy surface (APES) cross-sections along the b 1 puckering coordination was employed to estimate the vibronic coupling constants of PJTE problems for all the considered compounds.  相似文献   

5.
At the DFT (U)PBE0/cc-pVDZ level the structural parameters of a hypothetical Fe@C 60 endocomplex are determined. The (A 1//C 3v )–Fe@C 60 state characterized by the electron spin square of 3.07 au, the free valence of 4.15, the dipole moment of 1.15 D, and the 172 pm Fe nuclear shift relative to the center of inertia of С60 corresponds to the energy minimum. The Stone–Wales rearrangement in the quasi-triplet state increases the endocomplex energy by 1.56 eV and by 0.79 eV in the quasi-quintet state.  相似文献   

6.
The most important characteristics of the Voronoi-Dirichlet polyhedra (VDP) were determined for 20526 Ln atoms (Ln = La?Lu) in sublattices containing chemically identical lanthanide atoms in the crystal structures of 14659 inorganic, coordination, and organoelement compounds. The number of lanthanide VDP faces in the sublattice can vary from 4 to 36 and, irrespective of the lanthanide nature, the VDP have most often 14 faces. The Fedorov cuboctahedron is the most abundant type of VDP. In the crystal structures, Ln atoms were found to have, most often, C 1 site symmetry (~49% of cases) and also C s (16), C 2v (7%), or C 2 (6%) site symmetries.  相似文献   

7.
Isomerically pure endohedral metallofullerene Dy@C82(C 2v) was synthesized by the electric arc method, extracted from the soot with o-dichlorobenzene, isolated from the extract by HPLC, and characterized by mass spectrometry and spectrophotometry. The spectrophotometric titration of a solution of endohedral metallofullerene Dy@C82(C 2v) was conducted with potassium perchlorotriphenylmethide. The concentration of Dy@C82(C 2v) in o-dichlorobenzene was determined, and the molar absorption coefficients for its neutral and anionic forms were calculated (3.0?103 (at 927 nm) and 4.0?103 mol–1 L cm–1 (at 884 nm), respectively.  相似文献   

8.
Triple phosphates A2FeTi(PO4)3 (A = Na, Rb) were synthesized by the solid-phase method and studied by electronic microscopy, electron probe X-ray microanalysis, and IR and Mössbauer spectroscopy. The crystal structure of the obtained compounds was refined by X-ray powder diffraction (the Rietveld method). The unit-cell parameters are as follows: for Na2FeTi(PO4)3 (space group R \(\overline 3 \) c, Z = 6), a = 8.6015(1) Å, c = 21.718(1) Å, V = 1391.52(1) Å3; for Rb2FeTi(PO4)3 (space group P213, Z = 4), a = 9.8892(2) Å, V = 967.12(1) Å3. The base of the crystal structures is a mixed octahedral-tetrahedral framework {[FeTi(PO4)3]2?}3∞. Na+ and Rb+ cations are arranged in cavities of the framework. The influence of cationic substitutions on the change of the structural type of the isoformular compounds A2FeTi(PO4)3 (A = Na, Rb) was considered.  相似文献   

9.
The syntheses and crystal structures of two one-dimensional coordination polymers, [Mn(C5HO2F6)2(C16H20N2)] n (1) and [Mn(C5HO2F6)2(C20H20N2)] n (2), are described, where C5HO2F6 ? is the hexafluoro acetylacetonate anion, C16H20N2 is 1,6-bis(4-pyridyl)-hexane, and C20H20N2 is 1,4-bis[2-(3-pyridyl)ethyl]-benzene. In both phases, the metal ion lies on a crystallographic twofold axis and is coordinated by two chelating C5HO2F6 ? anions and two bridging bipyridyl ligands to generate a cis-MnN2O4 octahedron. The bridging ligands, which are completed by crystallographic inversion symmetry in both compounds, connect the metal nodes into zigzag [20 1 ] chains in 1 and contorted [001] chains in 2. Intrachain C–H???O interactions occur in 1 but not in 2, which may be correlated with the relative orientations of the ligands. Crystal data: 1, C26H22F12MnN2O4, M r = 709.40, monoclinic, C2/c (No. 15), a = 9.3475(2) Å, b = 16.6547(3) Å, c = 18.3649(4) Å, β = 91.1135(8)°, V = 2858.50(10) Å3, Z = 4, R(F) = 0.030, w R(F 2) = 0.075. 2, C30H22F12MnN2O4, M r = 757.44, monoclinic, C2/c (No. 15), a = 19.9198(2) Å, b = 10.6459(2) Å, c = 16.8185(3) Å, β = 119.8344(8)°, V = 3093.91(9) Å3, Z = 4, R(F) = 0.032, w R(F 2) = 0.078.  相似文献   

10.
A complex [Zn(C8H7O3)2(H2O)2] (C8H8O3 is vanillin) has been synthesized and characterized by IR, elemental analysis, and X-ray diffraction single-crystal analysis. The crystals are monoclinic, space group C2/c, a = 22.236(8) Å, b = 10.594(2) Å, c = 7.8190(16) Å, α = 89.90(3)°, β = 106.87(4)°, γ = 89.99(3)°, V = 1762.6(8) Å3, Z = 4, F(000) = 832, S = 1.079, ρ c = 1.521g cm?3, R = 0.0221, R w = 0.0604, μ = 1.433 mm?1. The Zn2+ ion is six-coordinated with a distorted octahedron geometry. The complex forms a three-dimensional network through intermolecular hydrogen bonds. The thermal decomposition kinetics of the complex for the second stage was studied under non-isothermal conditions by the TG and DTG methods. The kinetic equation can be expressed as dα/dt = Ae?E/RT 2(1 ? α)[1 ? ln(1 ? α)]1/2. The kinetic parameters (E, A), activation entropy ΔS , and activation free-energy ΔG were also gained.  相似文献   

11.
Density functional theory was used to study model ethylene reactions with CpTiIIIEt+A? (A? = CH3B(C6F5) 3 ? , or B(C6F5) 4 ? ; A? can be absent) compounds. The polymerization of ethylene on an isolated CpTiEt+ cation is hindered because of equilibrium between the CpTi(C2H4)Et+ primary complex and the primary product of CpTiBu+ insertion. At the same time, the polymerization of ethylene on CpTiEt+A? ion pairs (A? = CH3B(C6F5) 3 ? or B(C6F5) 4 ? ) is thermodynamically allowed (ΔE from ?26.2 to ?25.6 kcal/mol and ΔG 298 from ?10.9 to ?10.4 kcal/mol) and is not related to overcoming substantial energy barriers (ΔE # = 8.2?12.3 kcal/mol and ΔG 298 ) = 7.8?13.3 kcal/mol). The degree of polymerization can be low because of the effective occurrence of polymer chain termination by hydrogen transfer from the polymer chain to the monomer.  相似文献   

12.
Crystal structures are determined by X-ray crystallography for tetrafluoroantimonates(III) of single and double protonated 3-amino-1,2,4-triazolium cations of the composition (C2H5N4)SbF4 (I) (monoclinic: a = 4.7723(6) Å, b = 19.643(2) Å, c = 7.6974(9) Å, β = 97.239(2)°, Z = 4, Cc space group) and (C2H6N4)(SbF4)2 (II) (monoclinic: a = 4.7617(3) Å, b = 15.512(1) Å c = 7.4365(5)Å β = 107.706(1)°, Z = 2, P21/n space group). The structure of I is built from complex [SbF4]? anions and single charged (C2H5N4)+ cations; the structure of II is built from the same anion and double charged 3-amino-1,2,4-triazolium cation: (C2H6N4)2+. In the structure, weak interactions Sb…F join the anions in polymeric layers [SbF4] n n? that are assembled in a 3D framework by N-H…F hydrogen bonds. The formation of the double protonated 3-amino-1,2,4-triazolium cation (C2H6N4)2+, found in the crystal structure of II, is observed for the first time.  相似文献   

13.
The solubilities in the quaternary system K+, \( {\text{NH}}{_4^{+}} \)//Cl?, \( {\text{SO}}{_4^{2-}} \)H2O and its two ternary subsystems NH4Cl–KCl–H2O, (NH4)2SO4–K2SO4–H2O at 80.0 °C were measured using the isothermal dissolution equilibrium method under atmospheric pressure, and the corresponding phase diagrams were plotted. In the phase diagram of the NH4Cl–KCl–H2O system, there are three crystalline zones, which correspond to (K1?m,(NH4)m)Cl, ((NH4)n,K1?n)Cl and the co-existence zone of (K1?m,(NH4)m)Cl and ((NH4)n,K1?n)Cl, respectively. In the phase diagram of the (NH4)2SO4–K2SO4–H2O system, there is only one crystalline zone for (K1?t,(NH4)t)2SO4. In the phase diagram of the K+, \( {\text{NH}}{_4^{+}} \)//Cl?, \( {\text{SO}}{_4^{2-}} \)H2O system, there are three crystal zones, which correspond to (K1?t,(NH4)t)2SO4, (K1?m,(NH4)m)Cl and ((NH4)n,K1?n)Cl, respectively. According to the analysis and the calculations for the phase diagrams of the K+, \( {\text{NH}}{_4^{+}} \)//Cl?, \( {\text{SO}}{_4^{2 -}} \)H2O system at 80.0 °C and 50.0 °C, this paper proposes a technological process. In the process, the (K1?t,(NH4)t)2SO4 can be prepared at 80.0 °C and the ((NH4)n,K1?n)Cl can crystallize out at 50.0 °C. The mass fraction of K2SO4 in product L1 (K1?t,(NH4)t)2SO4 (t?=?0.1465) is 88.48%. The composition of solid solutions in the K+, \( {\text{NH}}{_4^{+}} \)//Cl?, \( {\text{SO}}{_4^{2 -}} \)H2O system was experimentally determined and then theoretical calculations about the process can be carried out.  相似文献   

14.
By the DFT/B3LYP method the equilibrium structures of oxygen complexes with water are calculated in various geometric conformations with symmetries C 2v and C s . By the MRCI/CASSCF method potential energy surface cross-sections of the 1.3[O2–H2O] complexation reaction are constructed. With taking into account the spin-orbit coupling, the forbidden transition moments a 1Δ g X 3Σ g ?, b 1Σ g +a 1Δ g , c 1Σ u ?a 1Δ g , A 3Σ u +X 3Σ g ? of the complexes are calculated and changes in their intensities at different geometric configurations of the complex are revealed.  相似文献   

15.
According to the data of UB3LYP/6-31G* and UMP2/cc-pVTZ calculations, the adiabatic potential energy surface of the cyclopentane radical cation is very intricate and combines six types of stationary structures of C s and C 2 symmetry. Ten equivalent C s structures with the totally symmetric electronic state (C s (2 A′)) correspond to global minima. Conformational transitions between the global minima occur along the inversion and pseudorotation coordinates, for each pair of minima the conformational transition occurring in one stage (through the only transition state). The inversion barrier is ~2 kcal/mol; pseudorotation barriers are ~4–8 kcal/mol. The structure of the potential surface provides the interpretation of the EPR data as a result of dynamic averaging over 20 C s (2 A′) and C 2 (2 A) stationary structures.  相似文献   

16.
Compositions of mixed ligand acetate, propionate, and pivalate complexes of rare earth metals of the cerium and yttrium groups with monoethanolamine are predetermined by the synthesis conditions and the nature of the carboxylate ligand and rare earth metal ion. Solid mixed ligand complexes [Ln(Piv)5(MEAH)][MEAH] and [Ln(Piv)3(MEA)], homoligand complexes [Ln(Piv)3] (HPiv is 2,2-dimethylpropionic (pivalic) acid), and gel-like hydroxo complexes [Ln(Carb)3–xy (NO3) x -(OH) y (MEA) w (H2O) z ] (HCarb is acetic (HAc) or propionic (HProp) acid) are isolated using original synthesis procedures involving ion pairs [MEAH]+[Carb] (MEA is monoethanolamine). The compounds are studied by IR spectroscopy, 1H NMR spectroscopy, elemental and thermal analyses, and mass spectrometry. Specific features for the complex formation of rare earth metal pivalates with MEA are additionally studied using quantum-chemical simulation.  相似文献   

17.
[Ln(H2O)8][Cr(NCS)6] · 5H2O aqua complexes, where Ln = Er (1), Lu (2), have been found in an aqueous solution instead of binary complex salts with an organic ligand in their cation, when crystal products of the reaction between Ln(NO3)3 · 6H2O (Ln = Er, Lu), K3[Cr(NCS)6] · 4H2O, and 8-oxyquinoline (C9H7NO) were studied by X-ray diffraction. Crystals of complexes 1 and 2 are isostructural and crystallize in triclinic system, space group P\(\bar 1\), Z = 2. For complex 1: a = 9.0677(4) Å, b = 9.3115(4) Å, c = 16.9595 Å, α = 81.526(2)°, β = 86.153(2)°, γ = 83.879(2)°, V = 1406.33(10) Å3, ρcalc = 1.894 g/cm3; for complex 2: a = 9.0438(3) Å, b = 9.2880(3) Å, c = 16.9181(3) Å, α = 81.7250(10)°, β = 86.1600(10)°, γ = 83.8850(10)°, V = 1396.38(7) Å3, ρcalc = 1.926 g/cm3.  相似文献   

18.
The atomic structure of ((C2H5)4N)2TeBr6 crystals (a = 17.930(8) Å, b = 11.133(5) Å, c = 15.022(7) Å, β = 109.28(9)°, space group C2/c, Z = 4, ρcalcd = 2.036 g/cm3) has been studied by X-ray diffraction. The ((C2H5)4N)2TeBr6 crystal structure consists of isolated [TeBr6]2? anions and ((C2H5)4N)+ cations. The electronic and geometric aspects that influence the luminescence and thermochromic properties of the complex have been considered.  相似文献   

19.
Two new porous coordination polymers based on cluster anions [Re4Te4(CN)12]4– and cationic Ln3+ (Ln = La, Gd) complexes with 1,10-phenanthroline (Рhen) are synthesized under hydrothermal conditions. The structures of the compounds are determined by X-ray diffraction analysis (CIF files CCDC 1437445 (I) and 1437446 (II)). Compound (РhenH)[{La(H2O)3(Рhen)2}{Re4Te4(CN)12}] · 1.5Рhen · 6H2O (I) crystallizes in the space group \(P\bar 1\) (triclinic system): a = 13.322(3), b = 15.977(3), c = 18.576(4) Å, α = 71.34(3)°, β = 85.56(3)°, γ = 88.27(3)°, V = 3734.8(13) Å3. Compound (PhenH)[{Gd(H2O)2(Phen)2}{Re4Te4(CN)12}] · 2Phen · 0.5H2O (II) crystallizes in the space group C2/c (monoclinic crystal system): a = 18.146(1), b = 30.245(2), c = 13.455(2) Å, β = 97.858(2)°, V = 7315.4(1) Å3. Structures I and II are based on polymer chains consisting of alternating fragments [Re4Te4(CN)12]4– and {Ln(H2O) n (Phen)2}3+ (Ln = La, n = 3; Ln = Gd, n = 2) linked by the bridging CN ligands. The packings of the polymers contain extended channels due to the developed network of noncovalent interactions. The walls of the channels are formed by both hydrophilic (CN) and hydrophobic (Рhen) groups. The channels, whose volume is 25 and 15% for compounds I and II, respectively, are filled by disordered Phen molecules and PhenH+ cations, as well as by H2O molecules.  相似文献   

20.
The products of 4′,5′-dibromobenzo-15-crown-5 (I) cyanation by the Rosenmund-Braun reaction are studied by the 1H NMR and IR spectroscopy methods. X-ray diffraction analysis of two isolated products, i.e., di(4′,5′-dicyanobenzo-15-crown-5) 1.6 hydrate {(CN)2B15C5}2 · 1.6H2O (IIa) and 4′,5′-dicyanobenzo-15-crown-5,4′-cyano-5′-cyano(bromo)benzo-15-crown-5 dihydrate (CN)3.85Br0.15(B15C5)2 · 2H2O (III) is performed. Crystals IIa are monoclinic, a = 15.882(2) Å, b = 11.412(2) Å, c = 18.484(3) Å, β = 100.717(3)°, V = 3291.7(9) Å3, Z = 4, space group P21/c, R = 0.0746 for 4775 reflections with I > 2σ(I). Crystals III are monoclinic, a = 15.956(3) Å, b = 11.425(2) Å, c = 18.865(4) Å, β = 99.32(3)°, V = 3394(1) Å3, Z = 4, space group P21/c, R = 0.0692 for 2070 reflections with I > 2σ(I). Compounds IIa and III have similar structures with two crystallographically independent molecules in each (A and B in IIa; C and D in III). Four of the five O atoms of a macrocycle in molecules A and C form hydrogen bonds with the water molecules. The latter molecules lie above and below the cycle plane at a distance of ~2 Å from this plane. The A and C molecules have identical conformations (TTG TTG TTG TTG TTC) that differ from those of molecules B (TTG TGG STT SSG TTC) and D (TTC TSG STT SSG TTC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号