首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the Markov chain ${\{X_n^x\}_{n=0}^\infty}$ on ${\mathbb{R}^d}$ defined by the stochastic recursion ${X_{n}^{x}= \psi_{\theta_{n}} (X_{n-1}^{x})}$ , starting at ${x\in\mathbb{R}^d}$ , where ?? 1, ?? 2, . . . are i.i.d. random variables taking their values in a metric space ${(\Theta, \mathfrak{r})}$ , and ${\psi_{\theta_{n}} :\mathbb{R}^d\mapsto\mathbb{R}^d}$ are Lipschitz maps. Assume that the Markov chain has a unique stationary measure ??. Under appropriate assumptions on ${\psi_{\theta_n}}$ , we will show that the measure ?? has a heavy tail with the exponent ???>?0 i.e. ${\nu(\{x\in\mathbb{R}^d: |x| > t\})\asymp t^{-\alpha}}$ . Using this result we show that properly normalized Birkhoff sums ${S_n^x=\sum_{k=1}^n X_k^x}$ , converge in law to an ??-stable law for ${\alpha\in(0, 2]}$ .  相似文献   

2.
For a holomorphic proper map F from the ball $\mathbb{B}^{n+1}$ into $\mathbb{B}^{N+1}$ that is C 3 smooth up to the boundary, the image $M=F(\partial\mathbb{B}^{n})$ is an immersed CR submanifold in the sphere $\partial \mathbb{B}^{N+1}$ on which some second fundamental forms II M and $\mathit{II}^{CR}_{M}$ can be defined. It is shown that when 4??n+1<N+1??4n?3, F is linear fractional if and only if $\mathit{II}_{M} - \mathit{II}_{M}^{CR} \equiv 0$ .  相似文献   

3.
A partial orthomorphism of ${\mathbb{Z}_{n}}$ is an injective map ${\sigma : S \rightarrow \mathbb{Z}_{n}}$ such that ${S \subseteq \mathbb{Z}_{n}}$ and ??(i)?Ci ? ??(j)? j (mod n) for distinct ${i, j \in S}$ . We say ?? has deficit d if ${|S| = n - d}$ . Let ??(n, d) be the number of partial orthomorphisms of ${\mathbb{Z}_{n}}$ of deficit d. Let ??(n, d) be the number of partial orthomorphisms ?? of ${\mathbb{Z}_n}$ of deficit d such that ??(i) ? {0, i} for all ${i \in S}$ . Then ??(n, d) =???(n, d)n 2/d 2 when ${1\,\leqslant\,d < n}$ . Let R k, n be the number of reduced k ×?n Latin rectangles. We show that $$R_{k, n} \equiv \chi (p, n - p)\frac{(n - p)!(n - p - 1)!^{2}}{(n - k)!}R_{k-p,\,n-p}\,\,\,\,(\rm {mod}\,p)$$ when p is a prime and ${n\,\geqslant\,k\,\geqslant\,p + 1}$ . In particular, this enables us to calculate some previously unknown congruences for R n, n . We also develop techniques for computing ??(n, d) exactly. We show that for each a there exists??? a such that, on each congruence class modulo??? a , ??(n, n-a) is determined by a polynomial of degree 2a in n. We give these polynomials for ${1\,\leqslant\,a\,\leqslant 6}$ , and find an asymptotic formula for ??(n, n-a) as n ?? ??, for arbitrary fixed a.  相似文献   

4.
Let ${N \geq 3}$ and u be the solution of u t = Δ log u in ${\mathbb{R}^N \times (0, T)}$ with initial value u 0 satisfying ${B_{k_1}(x, 0) \leq u_{0} \leq B_{k_2}(x, 0)}$ for some constants k 1k 2 > 0 where ${B_k(x, t) = 2(N - 2)(T - t)_{+}^{N/(N - 2)}/(k + (T - t)_{+}^{2/(N - 2)}|x|^{2})}$ is the Barenblatt solution for the equation and ${u_0 - B_{k_0} \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 if ${N \geq 4}$ . We give a new different proof on the uniform convergence and ${L^1(\mathbb{R}^N)}$ convergence of the rescaled function ${\tilde{u}(x, s) = (T - t)^{-N/(N - 2)}u(x/(T - t)^{-1/(N - 2)}, t), s = -{\rm log}(T - t)}$ , on ${\mathbb{R}^N}$ to the rescaled Barenblatt solution ${\tilde{B}_{k_0}(x) = 2(N - 2)/(k_0 + |x|^{2})}$ for some k 0 > 0 as ${s \rightarrow \infty}$ . When ${N \geq 4, 0 \leq u_0(x) \leq B_{k_0}(x, 0)}$ in ${\mathbb{R}^N}$ , and ${|u_0(x) - B_{k_0}(x, 0)| \leq f \in L^{1}(\mathbb{R}^{N})}$ for some constant k 0 > 0 and some radially symmetric function f, we also prove uniform convergence and convergence in some weighted L 1 space in ${\mathbb{R}^N}$ of the rescaled solution ${\tilde{u}(x, s)}$ to ${\tilde{B}_{k_0}(x)}$ as ${s \rightarrow \infty}$ .  相似文献   

5.
A Gizatullin surface is a normal affine surface V over $ \mathbb{C} $ , which can be completed by a zigzag; that is, by a linear chain of smooth rational curves. In this paper we deal with the question of uniqueness of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations on such a surface V up to automorphisms. The latter fibrations are in one to one correspondence with $ \mathbb{C}_{{\text{ + }}} $ -actions on V considered up to a “speed change”. Non-Gizatullin surfaces are known to admit at most one $ \mathbb{A}^{1} $ -fibration VS up to an isomorphism of the base S. Moreover, an effective $ \mathbb{C}^{ * } $ -action on them, if it does exist, is unique up to conjugation and inversion t $ \mapsto $ t ?1 of $ \mathbb{C}^{ * } $ . Obviously, uniqueness of $ \mathbb{C}^{ * } $ -actions fails for affine toric surfaces. There is a further interesting family of nontoric Gizatullin surfaces, called the Danilov-Gizatullin surfaces, where there are in general several conjugacy classes of $ \mathbb{C}^{ * } $ -actions and $ \mathbb{A}^{{\text{1}}} $ -fibrations, see, e.g., [FKZ1]. In the present paper we obtain a criterion as to when $ \mathbb{A}^{{\text{1}}} $ -fibrations of Gizatullin surfaces are conjugate up to an automorphism of V and the base $ S \cong \mathbb{A}^{{\text{1}}} $ . We exhibit as well large subclasses of Gizatullin $ \mathbb{C}^{ * } $ -surfaces for which a $ \mathbb{C}^{ * } $ -action is essentially unique and for which there are at most two conjugacy classes of $ \mathbb{A}^{{\text{1}}} $ -fibrations over $ \mathbb{A}^{{\text{1}}} $ .  相似文献   

6.
Consider the real Clifford algebra ${\mathbb{R}_{0,n}}$ generated by e 1, e 2, . . . , e n satisfying ${e_{i}e_{j} + e_{j}e_{i} = -2\delta_{ij} , i, j = 1, 2, . . . , n, e_{0}}$ is the unit element. Let ${\Omega}$ be an open set in ${\mathbb{R}^{n+1}}$ . u(x) is called an h-regular function in ${\Omega}$ if $$D_{x}u(x) + \widehat{u}(x)h = 0, \quad\quad (0.1)$$ where ${D_x = \sum\limits_{i=0}^{n} e_{i}\partial_{xi}}$ is the Dirac operator in ${\mathbb{R}^{n+1}}$ , and ${\widehat{u}(x) = \sum \limits_{A} (-1)^{\#A}u_{A}(x)e_{A}, \#A}$ denotes the cardinality of A and ${h = \sum\limits_{k=0}^{n} h_{k}e_{k}}$ is a constant paravector. In this paper, we mainly consider the Hilbert boundary value problem (BVP) for h-regular functions in ${\mathbb{R}_{+}^{n+1}}$ .  相似文献   

7.
We consider a discrete-time two-dimensional process $\{(L_{n}^{(1)},L_{n}^{(2)})\}$ on $\mathbb{Z}_{+}^{2}$ with a background process {J n } on a finite set, where individual processes $\{L_{n}^{(1)}\}$ and $\{L_{n}^{(2)}\}$ are both skip free. We assume that the joint process $\{Y_{n}\}=\{(L_{n}^{(1)},L_{n}^{(2)},J_{n})\}$ is Markovian and that the transition probabilities of the two-dimensional process $\{(L_{n}^{(1)},L_{n}^{(2)})\}$ are modulated depending on the state of the background process {J n }. This modulation is space homogeneous, but the transition probabilities in the inside of $\mathbb{Z}_{+}^{2}$ and those around the boundary faces may be different. We call this process a discrete-time two-dimensional quasi-birth-and-death (2D-QBD) process, and obtain the decay rates of the stationary distribution in the coordinate directions. We also distinguish the case where the stationary distribution asymptotically decays in the exact geometric form, in the coordinate directions.  相似文献   

8.
Given a vector field ${\mathfrak{a}}$ on ${\mathbb{R}^3}$ , we consider a mapping ${x\mapsto \Pi_{\mathfrak{a}}(x)}$ that assigns to each ${x\in\mathbb{R}^3}$ , a plane ${\Pi_{\mathfrak{a}}(x)}$ containing x, whose normal vector is ${\mathfrak{a}(x)}$ . Associated with this mapping, we define a maximal operator ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^1_{loc}(\mathbb{R}^3)}$ for each ${N\gg 1}$ by $$\mathcal{M}^{\mathfrak{a}}_Nf(x)=\sup_{x\in\tau} \frac{1}{|\tau|} \int_{\tau}|f(y)|\,dy$$ where the supremum is taken over all 1/N ×? 1/N?× 1 tubes τ whose axis is embedded in the plane ${\Pi_\mathfrak{a}(x)}$ . We study the behavior of ${\mathcal{M}^{\mathfrak{a}}_N}$ according to various vector fields ${\mathfrak{a}}$ . In particular, we classify the operator norms of ${\mathcal{M}^{\mathfrak{a}}_N}$ on ${L^2(\mathbb{R}^3)}$ when ${\mathfrak{a}(x)}$ is the linear function of the form (a 11 x 1?+?a 21 x 2, a 12 x 1?+?a 22 x 2, 1). The operator norm of ${\mathcal{M}^\mathfrak{a}_N}$ on ${L^2(\mathbb{R}^3)}$ is related with the number given by $$D=(a_{12}+a_{21})^2-4a_{11}a_{22}.$$   相似文献   

9.
We prove a global implicit function theorem. In particular we show that any Lipschitz map ${f : \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}}$ (with n-dim. image) can be precomposed with a bi-Lipschitz map ${\bar{g} : \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{m}}$ such that ${f \circ \bar{g}}$ will satisfy, when we restrict to a large portion of the domain ${E \subset \mathbb{R}^{n} \times \mathbb{R}^{m}}$ , that ${f \circ \bar{g}}$ is bi-Lipschitz in the first coordinate, and constant in the second coordinate. Geometrically speaking, the map ${\bar{g}}$ distorts ${\mathbb{R}^{n+m}}$ in a controlled manner so that the fibers of f are straightened out. Furthermore, our results stay valid when the target space is replaced by any metric space. A main point is that our results are quantitative: the size of the set E on which behavior is good is a significant part of the discussion. Our estimates are motivated by examples such as Kaufman’s 1979 construction of a C 1 map from [0, 1]3 onto [0, 1]2 with rank ≤ 1 everywhere. On route we prove an extension theorem which is of independent interest. We show that for any Dn, any Lipschitz function ${f : [0,1]^{n} \rightarrow \mathbb{R}^{D}}$ gives rise to a large (in an appropriate sense) subset ${E \subset [0,1]^{n}}$ such that ${f|_E}$ is bi-Lipschitz and may be extended to a bi-Lipschitz function defined on all of ${\mathbb{R}^{n}}$ . This extends results of Jones and David, from 1988. As a simple corollary, we show that n-dimensional Ahlfors–David regular spaces lying in ${\mathbb{R}^{D}}$ having big pieces of bi-Lipschitz images also have big pieces of big pieces of Lipschitz graphs in ${\mathbb{R}^{D}}$ . This was previously known only for D ≥ 2n?+?1 by a result of David and Semmes.  相似文献   

10.
This work starts with the introduction of a family of differential energy operators. Energy operators $({\varPsi}_{R}^{+}, {\varPsi}_{R}^{-})$ were defined together with a method to decompose the wave equation in a previous work. Here the energy operators are defined following the order of their derivatives $(\varPsi^{-}_{k}, \varPsi^{+}_{k}, k=\{0,\pm 1,\pm 2,\ldots\})$ . The main part of the work demonstrates for any smooth real-valued function f in the Schwartz space $(\mathbf{S}^{-}(\mathbb{R}))$ , the successive derivatives of the n-th power of f ( $n \in \mathbb{Z}$ and n≠0) can be decomposed using only $\varPsi^{+}_{k}$ (Lemma); or if f in a subset of $\mathbf{S}^{-}(\mathbb{R})$ , called $\mathbf{s}^{-}(\mathbb{R})$ , $\varPsi^{+}_{k}$ and $\varPsi^{-}_{k}$ ( $k\in \mathbb{Z}$ ) decompose in a unique way the successive derivatives of the n-th power of f (Theorem). Some properties of the Kernel and the Image of the energy operators are given along with the development. Finally, the paper ends with the application to the energy function.  相似文献   

11.
We provide a matrix invariant for isometry classes of p-tuples of points in the Grassmann manifold ${G_{n}\left(\mathbb{K}^{d}\right) }$ ( ${\mathbb{K=\mathbb{R}}}$ or ${\mathbb{C}}$ ). This invariant fully characterizes the p-tuple. We use it to classify the regular p-tuples of ${G_{2}\left(\mathbb{R}^{d}\right) }$ , ${G_{3}\left( \mathbb{R}^{d}\right) }$ and ${G_{2}\left( \mathbb{C}^{d}\right) }$ .  相似文献   

12.
In this paper, we study noncommutative domains ${\mathbb{D}_f^\varphi(\mathcal{H}) \subset B(\mathcal{H})^n}$ generated by positive regular free holomorphic functions f and certain classes of n-tuples ${\varphi = (\varphi_1, \ldots, \varphi_n)}$ of formal power series in noncommutative indeterminates Z 1, . . . , Z n . Noncommutative Poisson transforms are employed to show that each abstract domain ${\mathbb{D}_f^\varphi}$ has a universal model consisting of multiplication operators (M Z1, . . . , M Z n ) acting on a Hilbert space of formal power series. We provide a Beurling type characterization of all joint invariant subspaces under M Z1, . . . , M Z n and show that all pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ are compressions of ${M_{Z_1} \otimes I, \ldots, M_{Z_n} \otimes I}$ to their coinvariant subspaces. We show that the eigenvectors of ${M_{Z_1}^*, \ldots, M_{Z_n}^*}$ are precisely the noncommutative Poisson kernels ${\Gamma_\lambda}$ associated with the elements ${\lambda}$ of the scalar domain ${\mathbb{D}_{f,<}^\varphi(\mathbb{C}) \subset \mathbb{C}^n}$ . These are used to solve the Nevanlinna-Pick interpolation problem for the noncommutative Hardy algebra ${H^\infty(\mathbb{D}_f^\varphi)}$ . We introduce the characteristic function of an n-tuple ${T=(T_1, \ldots , T_n) \in \mathbb{D}_f^\varphi(\mathcal{H})}$ , present a model for pure n-tuples of operators in the noncommutative domain ${\mathbb{D}_f^\varphi(\mathcal{H})}$ in terms of characteristic functions, and show that the characteristic function is a complete unitary invariant for pure n-tuples of operators in ${\mathbb{D}_f^\varphi(\mathcal{H})}$ .  相似文献   

13.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

14.
Let L be a linear operator in L 2(? n ) and generate an analytic semigroup {e ?tL } t??0 with kernels satisfying an upper bound of Poisson type, whose decay is measured by ??(L)??(0,??]. Let ?? on (0,??) be of upper type 1 and of critical lower type $\widetilde{p}_{0}(\omega)\in(n/(n+\theta(L)),1]$ and ??(t)=t ?1/?? ?1(t ?1) for t??(0,??). In this paper, the authors first introduce the VMO-type space VMO ??,L (? n ) and the tent space $T^{\infty}_{\omega,\mathrm{v}}({\mathbb{R}}^{n+1}_{+})$ and characterize the space VMO ??,L (? n ) via the space $T^{\infty}_{\omega,\mathrm{v}}({{\mathbb{R}}}^{n+1}_{+})$ . Let $\widetilde{T}_{\omega}({{\mathbb{R}}}^{n+1}_{+})$ be the Banach completion of the tent space $T_{\omega}({\mathbb{R}}^{n+1}_{+})$ . The authors then prove that $\widetilde{T}_{\omega}({\mathbb{R}}^{n+1}_{+})$ is the dual space of $T^{\infty}_{\omega,\mathrm{v}}({\mathbb{R}}^{n+1}_{+})$ . As an application of this, the authors finally show that the dual space of $\mathrm{VMO}_{\rho,L^{\ast}}({\mathbb{R}}^{n})$ is the space B ??,L (? n ), where L * denotes the adjoint operator of L in L 2(? n ) and B ??,L (? n ) the Banach completion of the Orlicz-Hardy space H ??,L (? n ). These results generalize the known recent results by particularly taking ??(t)=t for t??(0,??).  相似文献   

15.
We classify hypersurfaces of rank two of Euclidean space ${\mathbb{R}^{n+1}}$ that admit genuine isometric deformations in ${\mathbb{R}^{n+2}}$ . That an isometric immersion ${\hat{f}\colon M^n \to \mathbb{R}^{n+2}}$ is a genuine isometric deformation of a hypersurface ${f\colon M^n\to\mathbb{R}^{n+1}}$ means that ${\hat f}$ is nowhere a composition ${\hat f=\hat F\circ f}$ , where ${\hat{F} \colon V\subset \mathbb{R}^{n+1} \to\mathbb{R}^{n+2}}$ is an isometric immersion of an open subset V containing the hypersurface.  相似文献   

16.
Bijective operators conserving the indefinite scalar product on a Krein space ${(\mathcal{K}, J)}$ are called J-unitary. Such an operator T is defined to be ${\mathbb{S}^1}$ -Fredholm if T?z 1 is Fredholm for all z on the unit circle ${\mathbb{S}^1}$ , and essentially ${\mathbb{S}^1}$ -gapped if there is only discrete spectrum on ${\mathbb{S}^1}$ . For paths in the ${\mathbb{S}^1}$ -Fredholm operators an intersection index similar to the Conley–Zehnder index is introduced. The strict subclass of essentially ${\mathbb{S}^1}$ -gapped operators has a countable number of components which can be distinguished by a homotopy invariant given by the signature of J restricted to the eigenspace of all eigenvalues on ${\mathbb{S}^1}$ . These concepts are illustrated by several examples.  相似文献   

17.
In this article, we study the topology of real analytic germs ${F \colon (\mathbb{C}^3,0) \to (\mathbb{C},0)}$ given by ${F(x,y,z)=\overline{xy}(x^p+y^q)+z^r}$ with ${p,q,r \in \mathbb{N}, p,q,r \geq 2}$ and (p, q)?=?1. Such a germ gives rise to a Milnor fibration ${\frac{F}{\mid F \mid}\colon \mathbb{S}^5\setminus L_F \to \mathbb{S}^1}$ . We describe the link L F as a Seifert manifold and we show that in many cases the open-book decomposition of ${\mathbb{S}^5}$ given by the Milnor fibration of F cannot come from the Milnor fibration of a complex singularity in ${\mathbb{C}^3}$ .  相似文献   

18.
Let Ω n denote the volume of the unit ball in ${\mathbb{R}^n}$ for ${n\in\mathbb{N}}$ . In the present paper, the authors prove that the sequence ${\Omega_{n}^{1/(n\,{\rm ln}\,n)}}$ is logarithmically convex and that the sequence ${\frac{\Omega_{n}^{1/(n\,{\rm ln}\,n)}}{\Omega_{n+1}^{1/[(n+1)\,{\rm ln}(n+1)]}}}$ is strictly decreasing for n ≥ 2. In addition, some monotonic and concave properties of several functions relating to Ω n are extended and generalized.  相似文献   

19.
Let ${\mathbb{Q}^3}$ be the moduli space of oriented circles in the three dimensional unit sphere ${\mathbb{S}^3}$ . Given a natural complex structure such space becomes a three dimensional complex manifold, with a M?bius invariant Hermitian metric h of type (2, 1). Up to M?bius transformations, all geodesics with respect to the Lorentz metric g = Re(h) on ${\mathbb{Q}^3}$ are determined to form a one-parameter family of circles on a helicoid in a space form ${\mathbb{R}^3, \mathbb{H}^3}$ or ${\mathbb{S}^{3}}$ , resp. We show also that any two oriented circles in ${\mathbb{S}^3}$ are connected by countably infinitely many geodesics in ${\mathbb{Q}^3}$ .  相似文献   

20.
In this note we prove the following: Let n?≥ 2 be a fixed integer. A system of additive functions ${A_{1},A_{2},\ldots,A_{n}:\mathbb{R} \to\mathbb{R}}$ is linearly dependent (as elements of the ${\mathbb{R}}$ vector space ${\mathbb{R}^{\mathbb{R}}}$ ), if and only if, there exists an indefinite quadratic form ${Q:\mathbb{R}^{n}\to\mathbb{R} }$ such that ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\geq 0}$ or ${Q(A_{1}(x),A_{2}(x),\ldots,A_{n}(x))\leq 0}$ holds for all ${x\in\mathbb{R}}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号