首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whole genome amplification (wga) of DNA is being widely implemented in many laboratories to extend the life of samples only available in limited quantities for genetic analysis. We determined the reliability of wgaDNA genotypes in three sets of replicates from the same individuals: (i) 23 pairs of genomic DNA (gDNA), (ii) 43 pairs gDNA versus wgaDNA, and (iii) 29 pairs of independently amplified wgaDNA. Amplification was performed using multiple displacement amplification (MDA). Genotyping was successful for both DNA types for 1268 out of 1534 SNPs from 164 cardiovascular candidate genes assayed in a single Illumina panel. Amplified DNA failed for 77 SNPs (6%) that were genotyped successfully with genomic material. Percent of successful SNP calls, and concordance between pairs and kappa statistics (kappa) were determined. A total of 54 110 genotypes from gDNA-wgaDNA pairs were available for concordance analysis. Mean kappa for gDNA-wgaDNA pairs was 0.99. Concordance between gDNA-wgaDNA pairs was higher than amongst wgaDNA pairs (mean kappa for the 29 independently amplified pairs of wgaDNA was 0.95; interquartile range: 0.93-1.00). A statistical analysis of those SNPs which failed to genotype from amplified DNA only revealed that those loci were more likely to be closer to the telomeres and in locally GC-rich sequences. In summary, the MDA method produces wgaDNA samples that can be genotyped using high-throughput technology with a very high reproducibility to the original DNA but with slightly lower call rates. DNA amplification methodologies provide a useful solution for current and future large-scale genetic analyses especially with limited quantities of samples and DNA.  相似文献   

2.
DNA profiling of short tandem repeats (STR) has been successfully used for the identification of individuals in forensic samples, accidents and natural disasters. However, STR profiling of DNA isolated from old crime scenes and damaged biological samples is difficult due to DNA degradation and fragmentation. Here, we show that pre‐amplification of STR loci using biotinylated primers for the STR loci is an efficient strategy to obtain STR profiling results from fragmented forensic samples. Analysis of STR loci with longer amplicon sizes is generally hampered, since these relatively long loci are vulnerable to DNA fragmentation. This problem was overcome by using reduced or increased primer concentrations for loci with shorter or longer amplicon sizes, respectively, in our pre‐amplification strategy. In addition, pre‐amplification of STR loci into two groups of short or long amplicon size increases the efficiency of STR profiling from highly fragmented forensic DNA samples. Therefore, differential pre‐amplification of STR loci is an effective way to obtain DNA profiling results from fragmented forensic samples.  相似文献   

3.
A total of 52 SNPs reported to be polymorphic in European, Asian and African populations were selected. Of these, 42 were from the distal regions of each autosome (except chromosome 19). Nearly all selected SNPs were located at least 100 kb distant from known genes and commonly used STRs. We established a highly sensitive and reproducible SNP-typing method with amplification of all 52 DNA fragments in one PCR reaction followed by detection of the SNPs with two single base extension reactions analysed using CE. The amplicons ranged from 59 to 115 bp in length. Complete SNP profiles were obtained from 500 pg DNA. The 52 loci were efficiently amplified from degraded samples where previously only partial STR profiles had been obtained. A total of 700 individuals from Denmark, Greenland, Somalia, Turkey, China, Germany, Taiwan, Thailand and Japan were typed, and the allele frequencies estimated. All 52 SNPs were polymorphic in the three major population groups. The mean match probability was at least 5.0 x 10(-19) in the populations studied. Typical paternity indices ranged from 336 000 in Asians to 549 000 in Europeans. Details of the 52 SNP loci and population data generated in this work are freely available at http://www.snpforid.org.  相似文献   

4.
Whole-genome DNA amplification (WGA) is a promising method that generates large amounts of DNA from samples of limited quantity. We investigated the accuracy of a multiplex PCR approach to WGA over STR loci. The amplification bias within a locus and over all analyzed loci was investigated in relation to the amount of template in the WGA reaction, the specific STR locus, and allele length. We observed reproducible error-free STR profiles with 10 ng down to 1 ng of DNA template. The amplification deviation at a locus and between loci was within the intra-method reproducibility. WGA is the method of choice for amplifying nanogram amounts of genomic DNA for different applications. We detected unbalanced STR amplifications at one locus and between loci, allelic drop-outs, and additional alleles after WGA of low-copy-number DNA. We found that the high number of drop-outs and drop-ins could be eradicated using pooled DNA from separate WGA reactions even with as little as 100 pg of starting template. Nevertheless, the quality of the results was still not sufficient for use in routine chimerism analysis of limited specific cell populations after allogeneic stem cell transplantation.  相似文献   

5.
Wang W  Sun W  Wu W  Zhou G 《Electrophoresis》2008,29(7):1490-1501
Adapter-ligation-mediated allele-specific amplification (ALM-ASA) is a potential method for multiplex SNPs typing at an ultra low cost. Here, we describe a kind of software, which designs allele-specific primers for ALM-ASA assay on multiplex SNPs. DNA sequences containing SNPs of interest are submitted into the software which contains various endonucleases for options. Based on the SNP sequence information and the selected endonucleases, the software is capable of automatically generating sets of information needed to perform genotyping experiments. Each set contains a suitable endonuclease, qualified allele-specific primers with orientations and melting temperatures, sizes of allele-specific amplicons, and gel electropherograms simulated according to the sizes of the allele-specific amplicons and the mobility of DNA fragments in 2% agarose gel. Seven SNPs in the arylamines N-acetyltransferase 2 (NAT2) gene, five SNPs in the BRCA1 gene, five SNPs in the COMT gene, six SNPs in the CYP2E1 gene, five SNPs in the MPO gene, and six SNPs in the NRG1 gene were selected for evaluating the software. Without extra optimization, seven SNPs in the NAT2 gene were successfully genotyped for genomic DNA samples from 127 individuals by using the first set of allele-specific primers yielded by the software. Although several steps are used in the ALM-ASA assay, the whole genotyping process can be completed within 3 h by optimizing each step. Profiting from the software, the ALM-ASA assay is easy-to-perform, labor-saving, and accurate.  相似文献   

6.
Zahra N  Hadi S  Smith JA  Iyengar A  Goodwin W 《Electrophoresis》2011,32(11):1371-1378
DNA extracted from forensic samples can be degraded and also contain co‐extracted contaminants that inhibit PCR. The effects of DNA degradation and PCR inhibition are often indistinguishable when examining a DNA profile. Two internal amplification controls (IACs) were developed to improve quality control of PCR using the AmpF?STR® SGM Plus® kit. The co‐amplification of these controls with DNA samples was used to monitor amplification efficiency and detect PCR inhibitors. IAC fragments of 90 and 410 bp (IAC90 and IAC410) were generated from the plasmid pBR322 using tailed primers and then amplified with ROX‐labelled primers. Co‐amplification of IAC90 and IAC410 was performed with varying amounts of template DNA, degraded DNA and DNA contaminated with humic acid, heme and indigo dye. Both IAC90 and IAC410 were successfully amplified with human DNA without significantly affecting the quality of the DNA profile, even with DNA amounts lower than 0.5 ng. In the presence of inhibitors, the IAC90 signal was still present after all human DNA loci fail to amplify; in contrast, the IAC410 signal was reduced or absent at low levels of inhibition. Amplification of the two IACs provided an internal PCR control and allowed partial profiles caused by inhibition to be distinguished from degraded DNA profiles.  相似文献   

7.
Because of its excellent monodispersity, high throughput, and low volume, microfluidics-based droplet PCR has become the core technology of digital PCR, next-generation sequencing, and other technology platforms. This study constructed a microfluidic water-in-oil droplet PCR system and amplified a commercially available forensic 22-plex short tandem repeat detection system. We analyzed the sensitivity, concordance, amplification efficiency of the droplet PCR, and influence factors of the above aspects. The droplet PCR showed high concordance with conventional bulk PCR and had high sensitivity as 0.125 ng. Furthermore, we observed the performance of droplet PCR in high-order mixed DNA. As the mixture ratios from 10:1 to 30:1, droplet PCR presented more mixture proportion (Mx) increased loci from 11 (57.89%) to 17 (89.47%). In the mixture ratios 20:1, 25:1, and 30:1, significant Mx differences between droplet PCR and bulk PCR were observed (p < 0.05). The results showed that the droplet PCR could improve the identification of the minor contributor's DNA in a two-person mixture and alleviate the imbalanced amplification problem. This study provides a reference and basis for the wide application of droplet PCR in forensic science.  相似文献   

8.
Single nucleotide polymorphisms (SNPs) are one of the most common markers in mammals. Rapid, accurate, and multiplex typing of SNPs is critical for subsequent biological and genetic research. In this study, we have developed a novel method for multiplex genotyping SNPs in mice. The method involves allele‐specific PCR amplification of genomic DNA with two stem‐loop primers accompanied by two different universal fluorescent primers. Blue and green fluorescent signals were conveniently detected on a DNA sequencer. We verified four SNPs of 65 mice based on the novel method, and it is well suited for multiplex genotyping as it requires only one reaction per sample in a single tube with multiplex PCR. The use of universal fluorescent primers greatly reduces the cost of designing different fluorescent probes for each SNP. Therefore, this method can be applied to many biological and genetic studies, such as multiple candidate gene testing, genome‐wide association study, pharmacogenetics, and medical diagnostics.  相似文献   

9.
There is growing interest in developing additional DNA typing techniques to provide better investigative leads in forensic analysis. These include inference of genetic ancestry and prediction of common physical characteristics of DNA donors. To date, forensic ancestry analysis has centered on population‐divergent SNPs but these binary loci cannot reliably detect DNA mixtures, common in forensic samples. Furthermore, STR genotypes, forming the principal DNA profiling system, are not routinely combined with forensic SNPs to strengthen frequency data available for ancestry inference. We report development of a 12‐STR multiplex composed of ancestry informative marker STRs (AIM‐STRs) selected from 434 tetranucleotide repeat loci. We adapted our online Bayesian classifier for AIM‐SNPs: Snipper, to handle multiallele STR data using frequency‐based training sets. We assessed the ability of the 12‐plex AIM‐STRs to differentiate CEPH Human Genome Diversity Panel populations, plus their informativeness combined with established forensic STRs and AIM‐SNPs. We found combining STRs and SNPs improves the success rate of ancestry assignments while providing a reliable mixture detection system lacking from SNP analysis alone. As the 12 STRs generally show a broad range of alleles in all populations, they provide highly informative supplementary STRs for extended relationship testing and identification of missing persons with incomplete reference pedigrees. Lastly, mixed marker approaches (combining STRs with binary loci) for simple ancestry inference tests beyond forensic analysis bring advantages and we discuss the genotyping options available.  相似文献   

10.
Analysis of two previously described polymorphic Alu insertions (Sb19.3 and NBC3) in world-wide human populations generated genotypic frequencies grossly in violation of Hardy-Weinberg equilibrium expectations. GenBank searches at the National Center for Biotechnology Information (NCBI) and sequencing analyses revealed that samples homozygous for the Sb19.3 Alu insertion amplify a band indistinguishable in size to the lack of insertion amplicon, corresponding to a paralogous locus on chromosome 4. This locus displays a very similar sequence (84%) to that flanking the Sb19.3 Alu insertion located at chromosome 19. Moreover, we have determined that NBC3, a different Alu insertion, is not located in the pseudoautosomal region of the Y-chromosome, as previously reported, but in position Yq11.2. Also, the band that mimics the lack of insertion amplicon corresponds to a paralogous locus located at chromosome X with a similarity of 92% to the sequence flanking the NBC3 Alu insertion. Finally, the utilization of newly designed primers avoided amplification from the paralogous loci and allowed a reliable assignation of genotypes for both loci. Unlike previously reported, using our new primers the Y-specific locus NBC3 was found not to be polymorphic in the populations analyzed.  相似文献   

11.
Forensic DNA profiling uses a series of commercial kits that co‐amplify several loci in one reaction; the products of the PCR are fluorescently labelled and analysed using CE. Before CE, an aliquot of the PCR is mixed with formamide and an internal lane size standard. Using the SGM Plus amplification kit, we have developed two internal non‐amplified controls of 80 bp and 380 bp that are labelled with ROX fluorescent dye and added to the PCR. Combined with two internal amplification controls of 90 bp and 410 bp, they provide additional controls for the PCR, electrokinetic injection, and CE and also function as an internal size standard.  相似文献   

12.
SNPs are one of the main sources of DNA variation among humans. Their unique properties make them useful polymorphic markers for a wide range of fields, such as medicine, forensics, and population genetics. Although several high-throughput techniques have been (and are being) developed for the vast typing of SNPs in the medical context, population genetic studies involve the typing of few and select SNPs for targeted research. This results in SNPs having to be typed in multiple reactions, consuming large amounts of time and of DNA. In order to improve the current situation in the area of human Y-chromosome diversity studies, we decided to employ a system based on a multiplex oligo ligation assay/PCR (OLA/PCR) followed by CE to create a Y multiplex capable of distinguishing, in a single reaction, all the major haplogroups and as many subhaplogroups on the Y-chromosome phylogeny as possible. Our efforts resulted in the creation of a robust and accurate 35plex (35 SNPs in a single reaction) that when tested on 165 human DNA samples from different geographic areas, proved capable of assigning samples to their corresponding haplogroup.  相似文献   

13.
Zha L  Yun L  Chen P  Luo H  Yan J  Hou Y 《Electrophoresis》2012,33(5):841-848
Tri-allelic single nucleotide polymorphisms (SNPs) are potential forensic markers for DNA analysis. Currently, only a limited number of tri-allelic SNP loci have been proved to be fit for forensic application. In this study, we aimed to develop an effective method to select and genotype tri-allelic SNPs based on both Pyrosequencing (PSQ) and the SNaPshot methods. 50 candidate SNPs were chosen from NCBI's dbSNP database and were analyzed by PSQ. The results revealed that 20 SNPs were tri-allelic and were located on 16 autosomal chromosomes. Then 20 SNP loci were combined in one multiplex polymerase chain reaction to develop a single base extension (SBE)-based SNP-typing assay. A total of 100 unrelated Chinese individuals were genotyped by this assay and allele frequencies were estimated. The total discrimination power was 0.999999999975 and the cumulative probability of exclusion was 0.9937. These data demonstrated that the strategy is a rapid and effective method for seeking and typing tri-allelic SNPs. In addition, the 20 tri-allelic SNP multiplex typing assay may be used to supplement paternity testing and human identification.  相似文献   

14.
We report on the effects of six dyes used in the detection of DNA on the process of DNA extraction, amplification, and detection of STR loci. While dyes can be used to detect the presence of DNA, their use is restricted if they adversely affect subsequent DNA typing processes. Diamond? Nucleic Acid Dye, GelGreen?, GelRed?, RedSafe?, SYBR® Green I, and EvaGreen? were evaluated in this study. The percentage of dye removed during the extraction process was determined to be: 70.3% for SYBR® Green I; 99.6% for RedSafe?; 99.4% for EvaGreen?; 52.7% for Diamond? Dye; 50.6% for GelRed?, and; could not be determined for GelGreen?. It was then assumed that the amount of dye in the fluorescent quantification assay had no effect on the DNA signal. The presence of all six dyes was then reviewed for their effect on DNA extraction. The t‐test showed no significant difference between the dyes and the control. These extracts were then STR profiled and all dyes and control produced full DNA profiles. STR loci in the presence of GelGreenTM at 1X concentration showed increased amplification products in comparison to the control samples. Full STR profiles were detected in the presence of EvaGreen? (1X), although with reduced amplification products. RedSafe? (1X), Diamond? Dye (1X), and SYBR® Green I (1X) all exhibited varying degrees of locus drop‐out with GelRed? generating no loci at all. We provide recommendations for the best dye to visualize the presence of DNA profile as a biological stain and its subsequent amplification and detection.  相似文献   

15.
Polymerization‐based signal amplification, a technique developed for use in rapid diagnostic tests, hinges on the ability to localize initiators as a function of interfacial binding events. We report here a new DNA detection method in which polymer growth in redox‐polymerization is used as a means to amplify detection signals. The introduction of biotin‐labeled chitosan (biotin‐CS) with highly dense amino groups into the polymerization amplification as macromolecular reducing agent, beneficially simplifies amplification operation, as well as, provides a large amount of initiation points to improve the sensitivity of detection. DNA hybridization, SA and biotin binding reactions led to the attachment of CS on a solid surface where specific DNA sequences were located. With the addition of the mixture containing monomer AM, crosslinker PEGDA and oxidant CAN onto the CS location, the growth of polymer films was triggered to render the corresponding spots readily distinguishable to the naked eye. Direct visualization of 0.21 fmol target DNA molecules of interest was demonstrated. Non‐small cell lung cancer p53 sequence was further selected as a proof‐of‐principle to detect DNA point mutation. The proposed method exhibited an efficient amplification performance for molecule detection, and paved a new way for visual diagnosis of biomolecules. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1929–1937  相似文献   

16.
We report a novel autonomous DNA machine for amplified electrochemical analysis of two DNAs. The DNA machine operates in a two‐cycle working mode to amplify DNA recognition events; the working mode is assisted by two different nicking endonucleases (NEases). Two bio‐barcode probes, a ZnS nanoparticle (NP)–DNA probe and a CdS NP–DNA probe, were used to trace two target DNAs. The detection system was based on a sensitive differential pulse anodic stripping voltammetry (DPASV) method for the simultaneous detection of ZnII and CdII tracers, which were obtained by dissolving the two probes. Under the optimised conditions, detection limits as low as 5.6×10?17 (3σ) and 4.1×10?17 M (3σ) for the two target DNAs were achieved. It has been proven that the DNA machine system can simultaneously amplify two target DNAs by more than four orders of magnitude within 30 min at room temperature. In addition, in combination with an aptamer recognition strategy, the DNA machine was further used in the aptamer‐based amplification analysis of adenosine triphosphate (ATP) and lysozyme. With the amplification of the DNA machine, detection limits as low as 5.6×10?9 M (3σ) for ATP and 5.2×10?13 M (3σ) for lysozyme were simultaneously obtained. The satisfactory determination of ATP and lysozyme in Ramos cells reveals the good selectivity and feasibility of this protocol. The DNA machine is a promising tool for ultrasensitive and simultaneous multianalysis because of its remarkable signal amplification and simple machine‐like operation.  相似文献   

17.
The detection of biomarkers is of great significance in the diagnosis of numerous diseases,especially cancer.Herein,we developed a sensitive and universal fluorescent aptasensor strategy based on magnetic beads,DNA G-quadruplex,and exonuclease Ⅲ(Exo Ⅲ).In the presence of a target protein,a label-free single strand DNA(ssDNA)hybridized with the aptamer was released as a trigger DNA due to specific recognition between the aptamer and target.Subsequently,ssDNA initiates the ExoⅢ-aided recycling to amplify the fluorescence signal,which was caused by N-methylmesoporphyrin IX(NMM)insertion into the G-quadruplex structure.This proposed strategy combines the excellent specificity between the aptamer and target,high sensitivity of the fluorescence signal by G-quadruplex and ExoⅢ-aided recycling amplification.We selected(50-1200 nmol/L)MUC1,a common tumor biomarker,as the proof-of-concept target to test the specificity of our aptasenso r.Results reveal that the sensor sensitively and selectively detected the target protein with limits of detection(LODs)of 3.68 and 12.83 nmol/L in buffer solution and 10%serum system,respectively.The strategy can be easily applied to other targets by simply substituting corresponding aptamers and has great potential in the diagnosis and monitoring of several diseases.  相似文献   

18.
《Electrophoresis》2017,38(8):1154-1162
Nonbinary single‐nucleotide polymorphisms (SNPs) are potential forensic genetic markers because their discrimination power is greater than that of normal binary SNPs, and that they can detect highly degraded samples. We previously developed a nonbinary SNP multiplex typing assay. In this study, we selected additional 20 nonbinary SNPs from the NCBI SNP database and verified them through pyrosequencing. These 20 nonbinary SNPs were analyzed using the fluorescent‐labeled SNaPshot multiplex SNP typing method. The allele frequencies and genetic parameters of these 20 nonbinary SNPs were determined among 314 unrelated individuals from Han populations from China. The total power of discrimination was 0.9999999999994, and the cumulative probability of exclusion was 0.9986. Moreover, the result of the combination of this 20 nonbinary SNP assay with the 20 nonbinary SNP assay we previously developed demonstrated that the cumulative probability of exclusion of the 40 nonbinary SNPs was 0.999991 and that no significant linkage disequilibrium was observed in all 40 nonbinary SNPs. Thus, we concluded that this new system consisting of new 20 nonbinary SNPs could provide highly informative polymorphic data which would be further used in forensic application and would serve as a potentially valuable supplement to forensic DNA analysis.  相似文献   

19.
This paper describes the development and validation of a novel 31-locus, six-dye STR multiplex system, which is designed to meet the needs of the rapidly growing Chinese forensic database. This new assay combines 20 extended-CODIS core loci (D3S1358, D5S818, TPOX, CSF1PO, TH01, vWA, D7S820, D21S11, D8S1179, D18S51, D16S539, D13S317, FGA, D1S1656, D2S441, D2S1338, D10S1248, D12S391, D19S433, and D22S1045), nine highly polymorphic loci in Chinese Han population (D3S3045, D6S1043, D6S477, D8S1132, D10S1435, D15S659, D19S253, Penta D, and Penta E), and two gender determining markers, amelogenin and Y-Indel, which could amplify DNA from extracts, as well as direct amplification from substrates. To demonstrate the suitability for forensic applications, this system was validated by precision and accuracy evaluation, concordance tests, case sample tests, sensitivity, species specificity, stability, stutter calculation, and DNA mixtures, according to the guidelines described by the Scientific Working Group on DNA Analysis Methods (SWGDAM) and regulations published by the China Ministry of Public Security. The validation results indicate the robustness and reliability of this new system, and it could be a potentially helpful tool for human identification and paternity testing in the Chinese population, as well as facilitating global forensic DNA data sharing.  相似文献   

20.
With a unique inheritance pattern compared to autosomal short tandem repeats (A-STRs), X chromosomal STRs (X-STRs) have special usage in forensic relationship testing. In this study, we designed a multiplex amplification system (named TYPER-X19 multiplex assay) consisting of 18 STR loci spreading from 7.837 to 149.460 Mb on the X chromosomes (DXS9895, DXS8378, DXS9902, DXS6810, DXS7132, DXS10079, DXS6789, DXS7424, DXS101, DXS6797, DXS7133, DXS6804, GATA165B12, DXS10103, HPRTB, GATA31E08, DXS8377, and DXS7423), and the amelogenin. PCR primers were marked with four kinds of fluorophores including FAM, HEX, TAMRA, and ROX. The multiplex system was optimized and tested for precision, concordance, reproducibility, sensitivity, stability, DNA mixture, and species specificity according to the conventional validation guidelines. The results indicated that the system was accurate, reliable, and sensitive enough, and was suitable for common forensic case-type samples. In the population genetic study, a total of 148 alleles were detected at the 18 X-STR loci in 398 Southern Han Chinese. Relatively high combined power of discrimination in male (PDm), power of discrimination in female (PDf), mean paternity exclusion chance in trios (MECtrio), and mean paternity exclusion chance in duos (MECDuo) by Desmarais were detected, and HPRTB-DXS10103 was in linkage disequilibrium. The results suggested that the TYPER-X19 multiplex assay was suitable for forensic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号