首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The electron beam-initiated cracking of a mixture of C17–C120 paraffins at 350–370°C has been studied. The cracking regime implied simultaneous feedstock irradiation and rapid distillation of fragmentation products from the irradiation zone. The distillate was a mixture of 61.5 wt % alkanes and 38.5 wt % alkenes. The product molecule contained on average 13 carbon atoms. The gasoline fraction in the condensate was 32.3 wt %. It was demonstrated that the product composition can be changed depending on the geometric parameters of reaction equipment and temperature distribution at the reactor outlet.  相似文献   

2.
The steam cracking (copyrolysis) of naphtha with oils/waxes from thermal decomposition of polyalkenes has been investigated as a process for chemical recycling of plastic wastes. High-density polyethylene (HDPE), two-component mixture (LDPE/PP) and three-component mixture (HDPE/LDPE/PP) were thermally decomposed in a batch reactor at 450 °C, thus forming oil/wax products. Subsequently, these products were dissolved in heavy naphtha in the amount of 10 mass% to obtain steam cracking feedstock. The composition of gaseous and liquid products during copyrolysis was studied at 780 °C and 820 °C in dependence on residence time from 0.08 s to 0.51 s. The obtained results were compared with the product composition from steam cracking of naphtha at identical experimental conditions. The decomposition of polyalkene oils/waxes during copyrolysis was confirmed on the basis of analysis of liquid products. It was shown that more ethene and propene was formed during copyrolysis of oil/wax from HDPE in comparison with naphtha and both mixtures and so oil/wax from HDPE seems to be favourable component of steam cracking feedstock. There were slight differences between product compositions from copyrolysis of two- and three-component mixtures. The presence of HDPE in three-component mixture supported formation of gas and ethene. The presence of oil/wax form PP enhanced formation of propene and branched alkenes. For both type of polyalkenic mixtures the yields of desired low molecular alkenes and alkanes were higher or approximately the same as from naphtha. The results confirm suitability of oils/waxes from polyalkenes as a co-feed for steam cracking units.  相似文献   

3.
The irradiation of gaseous alkane mixtures under circulation conditions was used for the synthesis of liquid branched hydrocarbons. It was found that the synthesized liquid product was a mixture of alkanes with the average molecular weight higher than the molecular weight of the parent gas by a factor of 3–4. The resulting liquids were characterized by boiling range from 35 to 200°C in atmospheric distillation. The average degree of molecular branching in the synthesized liquids was evaluated on the basis of their knock resistance. The octane ratings of liquid mixtures were above 95 (motor octane number) or 103 (research octane number). The fractional composition and detonation properties of the synthesized liquids suggested the prevalence of C5–C11 isomers with highly branched structures in these liquids. Depending on irradiation conditions, 2,3-dimethylbutane, 2-methylpentane, or 3-methylpentane was predominant among hexanes. As a rule, 2,2,3-trimethylbutane and 2,3-dimethylpentane prevailed among heptanes.  相似文献   

4.
The conversion of C1–C4 hydrocarbons into gaseous and liquid products in a dielectric barrier discharge plasma in the presence of water has been studied. The formation of a deposit on the electrode surface is prevented by introducing water in the liquid state into a gaseous hydrocarbon stream, a finding that has been confirmed by IR spectroscopic study of the electrode surface. Hydrogen and C2+ hydrocarbons have been detected among the gaseous products of conversion, the liquid products being represented by C6–C10+ alkanes. The total liquid products have amounted to 13.4, 26.0, or 36.6% for the methane, propane, or n-butane conversion, respectively. A 10% propane or butane admixture to methane increases the yield of the liquid products to make 22.0 and 31.7% for the methane–propane and the methane–butane mixture, respectively.  相似文献   

5.
This investigation involves an experimental study on the pyrolysis of scrap tires under different operating conditions such as feedstock size and pyrolysis temperature by highlighting the properties of the whole liquid products generated during each thermal degradation process. The complete conversion temperature for the pyrolysis of used tires was close to 500?550°C. The characteristics of liquid fraction were determined by elemental analysis, chromatographic and spectroscopic techniques and distillation data. All the obtained atomic ratios are around 1,4 which is significant that such pyrolytic liquids are a mixture of aliphatic and aromatic compounds derived from polymeric materials. Analysis of the pyrolytic oil (pyro-oil) by chromatographic analysis showed that it was a complex mixture of organic compounds C5?C26, aromatics and a large proportion of light hydrocarbons that can be used as liquid fuels. Furthermore, the comparison distillation data indicates that more than 40% of such pyrolytic oil fraction with the boiling point range between 180?360°C is specified for diesel. It is noted that the viscosity decreases obviously from 4.87 to 1.79 with the increase in temperature.  相似文献   

6.
Radiolysis of gaseous mixtures based on n-butane was studied in the circulation mode of irradiation, and the component composition of liquid products was measured. The apparent yield of n-butane decomposition is 13.7 molecules/100 eV. Radiolysis is accompanied by a monotonous decrease in the molecular mass of the irradiated mixture. It was shown that the liquid product contains alkanes from C5H12 to C12H26 with the prevalence of C6H14 and C8H18 isomers. The main products are 2-methylbutane, 3-methylpentane, 3,4-dimethylhexane, and 3-methylheptane. A low yield of heptane isomers (~5%) is due to a small rate of degradation of propane and a low yield of propyl radicals as a result of propane formation mainly via the ionic mechanism.  相似文献   

7.
Utilization of oils/waxes obtained from thermal cracking of individual LDPE (low density polyethylene), HDPE (high density polyethylene), LLDPE (linear low density polyethylene), PP (polypropylene), or cracking of mixed polymers PP/LDPE (1: 1 mass ratio), HDPE/LDPE/PP (1: 1: 1 mass ratio), HDPE/LDPE/LLDPE/PP (1: 1: 1: 1 mass ratio) for the production of automotive gasolines and diesel fuels is overviewed. Thermal cracking was carried out in a batch reactor at 450°C in the presence of nitrogen. The principal process products, gaseous and liquid hydrocarbon fractions, are similar to the refinery cracking products. Liquid cracking products are unstable due to the olefins content and their chemical composition and their properties strongly depend on the feed composition. Naphtha and diesel fractions were hydrogenated over a Pd/C catalyst. Bromine numbers of hydrogenated fractions decreased to values from 0.02 g to 6.9 g of Br2 per 100 g of the sample. Research octane numbers (RON) before the hydrogenation of naphtha fractions were in the range from 80.5 to 93.4. After the hydrogenation of naphtha fractions, RON decreased to values from 61.0 to 93.6. Diesel indexes (DI) for diesel fractions were in the range from 73.7 to 75.6. After the hydrogenation of diesel fractions, DI increased up to 104.9.  相似文献   

8.
This study presents a quantitative gas chromatography–mass spectrometry analysis of bicyclic sesquiterpanes (BSs) in numerous crude oils and refined petroleum products including light and mid-range distillate fuels, residual fuels, and lubricating oils collected from various sources. Ten commonly recognized bicyclic sesquiterpanes were determined in all the studied crude oils and diesel range fuels with principal dominance of BS3 (C15H28), BS5 (C15H28) and BS10 (C16H30), while they were generally not detected or in trace in light fuel oils like gasoline and kerosene and most lubricating oils. Laboratory distillation of crude oils demonstrated that sesquiterpanes were highly enriched in the medium distillation fractions of ∼180 to 481 °C and were generally absent or very low in the light distillation fraction (boiling point to ∼180 °C) and the heavy residual fraction (>481 °C). The effect of evaporative weathering on a series of diagnostic ratios of sesquiterpanes, n-alkanes, and biomarkers was evaluated with two suites of weathered oil samples. The change of abundance of sesquiterpanes was used to determine the extent of weathering of artificially evaporated crude oils and diesel. In addition to the pentacyclic biomarker C29 and C30 αβ-hopane, C15 and C16 sesquiterpanes might be alternative internal marker compounds to provide a direct way to estimate the depletion of oils, particularly diesels, in oil spill investigations. These findings may offer potential applications for both oil identification and oil-source correlation in cases where the tri- to pentacyclic biomarkers are absent due to refining or environmental weathering of oils.  相似文献   

9.
The circulating mode of electron-beam irradiation was used for synthesis of the branched liquid hydrocarbons from the gaseous alkane mixtures, including natural gas and the associated petroleum gas. Atmospheric distillation of resulting liquids was characterized by boiling point range from 36 up to 200–230 °C. The average degree of molecular branching in the synthesized liquids was evaluated on the basis of their antiknock characteristics. The octane values of liquids synthesized from natural gaseous mixtures were above 95. The fractional composition and antiknock characteristics of synthesized liquids suggested the prevalence of C5–C11 isomers with highly branched structures. Fractional and isomeric compositions of the liquid products depended on the gas-phase composition, dose rate, and gas-dynamic conditions in the irradiation area.  相似文献   

10.
The thermal decomposition of polyalkenes was investigated as a recycling route for the production of petrochemical feedstock. Low-density polyethylene (LDPE) and polypropylene (PP) were thermally decomposed individually in a batch reactor at 450 °C, thus forming oil/wax products. Then these products were dissolved in primary heavy naphtha to obtain steam cracking feedstock. The selectivity and kinetics of copyrolysis for 10 mass% solutions of oil/waxes from LDPE or PP with naphtha in the temperature range from 740 to 820 °C at residence times from 0.09 to 0.54 s were studied. The decomposition of polyalkene oil/waxes during copyrolysis was confirmed. It was shown that the yields of the desired alkenes (ethene, propene), according to polymer type, increased or only slightly decreased compared to the yields from naphtha.In addition to the primary reactions, the secondary reactions leading to coke formation have also been studied. The formation of coke during copyrolysis of LDPE wax with naphtha was comparable to the coking of pure naphtha. Slightly higher formation of coke was obtained at PP wax solution at the beginning of the measurements, on the clean surface of the reactor. After a thin layer of coke covered the walls, the production was the same as that from naphtha. The results confirm the possibility of polyalkenes recycling via the copyrolysis of polyalkene oils and waxes with conventional liquid steam cracking feedstocks on already existing industrial ethylene units.  相似文献   

11.
The membrane separation of the four-component mixture of gaseous alkanes C1–C4 is studied. Homogeneous films based on two high-permeable polymers, namely, addition-type poly[3-(trimethylsilyl)tricyclononene-7] and poly[3,4-bis(trimethylsilyl)tricyclononene-7], are used as membranes. Separation of the multicomponent mixture of hydrocarbons on these polymers follows the same trends as separation of binary mixtures CH4-C4H10 on polyacetylenes. In the presence of higher hydrocarbons, the permeability coefficients of methane decrease and the permeates become enriched with higher hydrocarbons. During separation of the multicomponent mixture, permeability coefficients P(C4H10) attain high values (up to 12000 Barrers).  相似文献   

12.
The pyrolysis products formed during the isothermal decomposition of HMX at 211°C are H2O, HCN, CO, CH2O, NO, N2O, methylformamide, C2H6N2O, octahydro-1-nitroso-3,5,7-trinitro-1,3,5,7-tetrazocine, and a nonvolatile residue. The temporal behaviors of these products during the decomposition are presented. The method for using time-of-flight (TOF) velocity spectra to assist mass-spectrometry measurements in identifying the different gaseous products formed from the pyrolysis of a material by determining the approximate molecular weights of the different gaseous products contributing to the different m/z values in the mass spectrum of the mixture is described. The ion fragmentation of HMX as a function of electron energy shows complete fragmentation of the HMX molecular ion for electron energies ≥ 12.4 eV. No fragments from the pyrolysis of HMX other than those mentioned above are observed.  相似文献   

13.
Temperature-induced change in reactivity of the frequently used ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate ([C4C1im]BF4) is presented as a prerequisite for the rational screening of reaction courses in material synthesis. [C4C1im]BF4 becomes active with oxidic precursor compounds in reduction reaction at ϑ≥200 °C, even without the addition of an external reducing agent. The reaction mechanism of forming red amorphous selenium from SeO2 is investigated as a model system and can be described similarly to the Riley oxidation. The reactive species but-1-ene, which is formed during the decomposition of [C4C1im]BF4, reacts with SeO2 and form but-3-en-2-one, water, and selenium. Elucidation of the mechanism was achieved by thermoanalytical investigations. The monotropic phase transition of selenium was analyzed by the differential scanning calorimetry. Beyond, the suitability of the single source oxide precursor Bi2Se3O9 for the synthesis of Bi2Se3 particles was confirmed. Identification, characterization of formed solids succeeded by using light microscopy, XRD, SEM, and EDX.  相似文献   

14.
The kinetics and mechanism of noncatalytic liquid-phase oxidation of but-1-ene and but-2-ene with nitrous oxide in a benzene solution in the temperature range from 180 to 240°C were studied. Oxidation proceeds via the 1,3-dipolar cycloaddition mechanism to form carbonyl compounds. Both of these reactions occur with close rates and activation energies and have the first orders with respect to the alkene and N2O. A considerable fraction (39%) of but-1-ene involved in oxidation undergoes cleavage at the double bond yielding propanal and an equivalent amount of methylene, the latter producing ethylcyclopropane and cycloheptatriene. The oxidation of but-2-ene proceeds with a minimum bond cleavage and affords methyl ethyl ketone with 84% selectivity. Regularities of the oxidation of terminal and internal alkenes C2—C8 with nitrous oxide were analyzed using the previously published data. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 925–933, April, 2005.  相似文献   

15.
The kinetics of formation of [C3H5]+[M ? CH3]+, [C3H4]+·[M ? CH4]+· and [C2H4]+·[M ? C2H4]+· from but-1-ene, cis- and trans-but-2-ene, 2-methylpropene, cyclobutane and methylcyclopropance following field ionisation have been determined as a function of time 20 (or 30) picoseconds to 1 nanosecond and at two points in the microsecond time-frame. The results are consistent with the supposition that at the shortest accessible times (20 to 30 picoseconds) the structure of the [C4H8]+· molecular ion qualitatively resembles that of its neutral precursor, but suggest that prior to decomposition within nanoseconds the various molecular ions (excepting cyclobutane where the processes are slower) attain a common structure or mixture of structures. Reaction pathways of the presumed known ion structures are delineated from the nature of decompostion at the shortest times.  相似文献   

16.
Synthesis conditions of pyrocarbon coatings in a fluidized bed via pyrolysis of gaseous hydrocarbons from a CH4-Ar mixture at temperatures of 1300–2000°C and from C3H6-Ar at 1200–1500°C were examined. The corrosion resistance of the pyrocarbon coatings in HNO3-H2SO4 oxidizing mixture was studied.  相似文献   

17.
The average molecular structures of 2,3-diazabicyclo[2.2.1]hept-2-ene and 2,3-diazabicyclo[2.2.2] oct-2-ene have been determined by electron diffraction in the gas phase. The structural parameters were obtained by applying a least squares analysis on the molecular scattering intensity functions. For 2,3-diazabicyclo[2.2.1]hept-2-ene, Cs symmetry was assumed in calculating the geometry of the molecule. The parameters thus determined are: N3=N2 = 1.221 Å, N3- C4 = 1.445 Å, C4-C5 = 1.538 Å, C-H(ave.) = 1.112 Å, < C1N2N3 = 116.3°, < N3C4C5 = 105.2°, < C1C4C5 = 71.5°, C4-C7 = 1.547 Å, C5-C6 = 1.530 Å, < C1C7C4 = 108.0°. For 2,3-diazabicyclo[2.2.2]oct-2-ene, C2vsymmetry was assumed. The geometrical parameters are: N3 = N2 = 1.243 Å, N3-C4 = 1.473 Å, C4-C5 = 1.550 Å, C5-C6 = 1.516 Å, C-H(ave.) = 1.119 Å,< C1N2N3 = 115.1°, < N3C4C5 = 109.1°, < C6C1C4 = 71.6°.  相似文献   

18.
The pyrolysis of thermally thick (approximately 75 g) biomass residues samples (i.e. brewer spent grains, fibreboard and coffee beans waste) has been investigated in an in-house designed and fabricated macro-TGA both by rapid sample introduction at reactor temperatures from 600 to 900 °C and by applying a constant heating rate of 10 K/min. The composition of the product gas is determined by simultaneous online use of a micro-GC and a FTIR analyser. The product yields (liquid, char and gas) and the gas composition show a clear dependence on temperature and heating rate. The main gas products are CO2, CO, CH4, H2, C2H2, C2H6 and C2H4. The results show that a rise in temperature leads to increasing gas yields and decreasing liquid and char yields. Lower heating rates favour liquid and char yields. The release patterns of the gaseous species are also greatly affected by the temperature history of the sample.  相似文献   

19.
Plastic wastes coming from a waste packaging separation and classification plant have been pyrolysed in a semibatch nonstirred autoclave, swept by a continuous flow of N2. The plastic waste contains 39.5% PE, 34.2% PP, 16.2% PS and EPS, and some other minor materials. Temperatures in the range 400–600 °C have been explored, and it has been found that over 460 °C total thermal decomposition of the waste plastics takes place. Three catalysts have been tested: HZSM-5, red mud and AlCl3. Solid yields about 5–7%, liquid yields in the range 40–70% and gas yields in the range 12–24% were obtained. The liquid products were a mixture of C5–C20 compounds with a very high proportion of aromatics (>70%). Such liquids contain significant amounts of valuable chemicals such as styrene (20–40%), toluene (9–15%) and ethylbenzene (7–16%) and have rather high GCV (40–43 MJ kg−1). Thermal pyrolysis oils were a wax-like product which solidified at room temperature, whereas the oils obtained with any of the catalysts were less viscous and maintained in liquid state at room temperature. HZSM-5 favoured gas production and, increased the aromaticity and decreased the carbon number of the oils. AlCl3 did not modify pyrolysis yields but gave rise to lighter liquids. Red mud produced higher liquid yields and the liquids were less viscous, but it was not observed a clear effect on the carbon number of the oils.  相似文献   

20.
Oxygen added in amounts of 0.01-0.1% was found to cause the explosion of an acetylene–chlorine mixture at temperatures as low as ?78°C. Explosion occurrence and nature depend on the mode of mixing the reactants, the effect of oxygen being associated with concentration limits. The dependence of explosion-inducing oxygen amounts on temperature, pressure, concentrations of reactants, reactor surface type and area, additions of inert gases, and reaction products were investigated. The effect of light on the C2H2 + Cl2 + O2 was studied. The composition of gaseous products resulting from acetylene–chlorine mixture explosion in the presence of minute amounts of oxygen, from a slow reaction inhibited and noninhibited by oxygen, and also from explosion at 400°C in the absence of oxygen, was determined. The results obtained point to the fact that any acetylene–chlorine mixture flash caused by small amounts of oxygen is a branched chain reaction involving activated particles, chain branching presumably being associated with the decomposition of radical CHCl=CHOO* → CH + HCl + CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号