首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
N-(R-carbamothioyl)cyclohexanecarboxamides (R: diethyl, di-n-propyl, di-n-butyl, diphenyl and morpholine-4) and their Ni(II) and Cu(II) complexes have been synthesized and characterized by elemental analyses, FT-IR and NMR methods. N-(diethylcarbamothioyl)cyclohexanecarboxamide, HL1, C12H22N2OS, crystallizes in the orthorhombic space group P212121, with Z = 4, and unit cell parameters, a = 6.6925(13) Å, b = 9.0457(18) Å, c = 22.728(5) Å. The conformation of the HL1 molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the torsion angles O1–C6–N2–C5, C6–N2–C5–N1 and S1–C5–N2–C6 of 1.68°, ?67.47° and 115.50°, respectively. The structure of HL1 also shows a delocalization of the π electrons of the thiocarbonyl group over the C–N bonds. The ring puckering analysis shows that the cyclohexane ring has a chair conformation. The bis(N-(morpholine-4-carbonothioyl)cyclohexane carboxamido)nickel(II) complex, Ni(L5)2, C24H38N4NiO4S2, crystallizes in the monoclinic space group P21/c, with Z = 4, and unit cell parameters, a = 16.919(3) Å, b = 8.3659(17) Å, c = 19.654(4) Å, β = 107.43(3)°. Ni(L5)2 is a cis-complex with a slightly distorted square-planar coordination of the central nickel by two oxygen and two sulfur atoms.  相似文献   

2.
Two tetranuclear manganese complexes, [Mn4(L1)6](ClO4)2?2.75H2O (1) [HL1 = 4-methyl-2-((pyridin-2-ylmethylene)amino)phenol] and [Mn4(L2)4(NO3)3(OH)]?pz?3H2O (2) [HL2 = (1H-pyrazol-1-yl)(pyridin-2-yl)methanol, pz = pyrazole], have been synthesized and characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction, and magnetic measurements. The structural analysis revealed that the central manganese ion is linked with three apical manganese ions through six phenoxo-bridges creating a Mn4O6 core for 1; 2 has a cubane-like topology with the Mn(II) ions and the deprotonated oxygens from L2 alternatively occupying vertices. The magnetic studies indicated a weak ferromagnetic coupling interaction (J = 0.48 ± 0.087 cm?1, g = 2.00, θ = ?0.78 K) for 1 and a weak antiferromagnetic spin-exchange interaction (J1 = ?0.50 ± 0.075 cm?1, J2 = ?0.13 ± 0.082 cm?1, g = 1.98) between Mn(II) ions for 2. The magnetostructural correlations of the two Mn4 clusters have been discussed tentatively.  相似文献   

3.
Single crystals of a new organic–inorganic compound, (C5H6N5)2Cr2O7 (1), adeninium dichromate, were grown by the slow evaporation technique and characterized by X-ray diffraction, infrared absorption, and the optical properties were also investigated by UV-vis absorption spectroscopy. The compound crystallizes in the triclinic system and P-1 space group with a = 11.6850(2) Å, b = 11.7531(5) Å, c = 14.5603(7) Å, α = 83.956(3)°, β = 70.481(4)°, γ = 61.863(2)°, V = 1658.70(12) Å3. The structure of the compound consists of four adeninium, (C5H5N2)+, cations, and two dichromate dianions with all the atoms situated in general positions. Each dichromate anion is formed by two tetrahedral CrO4 joined through shared O atoms and are linked to the cations with several weak hydrogen bonding interactions resulting in an extended network. 3-D Hirshfeld surface analysis and 2-D fingerprint plots indicate that the packing is dominated by H?O/O?H and H?N/N?H contacts.  相似文献   

4.
Two hydrazone ligands, (E)-N′-(3-bromo-2-hydroxybenzylidene)-2-methoxybenzohydrazide (HLa) and (E)-N′-(2-hydroxy-3-methylbenzylidene)-2-methoxybenzohydrazide (HLb), were prepared and characterized by IR, UV–vis, and 1H NMR spectroscopy. The corresponding vanadium(V) complexes, 2[VOLaL]·CH3OH (1) and [VOLbL] (2), where L is the monoanionic form of benzohydroxamic acid (HL), were prepared and characterized by IR and UV–vis spectroscopy, and single-crystal X-ray diffraction. Complex 1 crystallizes as the monoclinic space group P21/c, with unit cell dimensions a = 14.4161(16) Å, b = 14.0745(16) Å, c = 24.069(2) Å, β = 96.247(2), V = 4854.5(9) Å3, Z = 4, R1 = 0.0541, wR2 = 0.1423, Goof = 1.032. Complex 2 crystallizes in the orthorhombic space group Pbca, with unit cell dimensions a = 13.5906(6) Å, b = 18.1865(11) Å, c = 18.4068(11) Å, V = 4549.5(4) Å3, Z = 8, R1 = 0.0549, wR2 = 0.1397, Goof = 1.054. X-ray analysis indicates that the complexes are mononuclear octahedral vanadium(V) complexes. The thermal behavior of the complexes was investigated. The hydrazone ligands and their complexes were also evaluated for their antibacterial (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas fluorescence) and antifungal (Candida albicans and Aspergillus niger) activities using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. The two complexes have moderate to good activities against B. subtilis and S. aureus, and 1 has moderate activity against E. coli.  相似文献   

5.
《Polyhedron》1999,18(8-9):1135-1140
The preparation of several new gold(I) complexes by chloride metathesis of [AuCl(HL)] [HL=Ph2PNHP(O)Ph2] with either HL or K[Ph2P(E)NP(E)Ph2] (E=S or Se) is described. All compounds were characterised by a combination of 31P{1H}, 1H and IR spectroscopy, microanalysis and X-ray crystallography. X-ray structural studies reveal that [Au(HL)2]Cl [monoclinic, space group P21/c, a=9.0726(3) Å, b=21.0847(6) Å, c=12.0131(3) Å, β=105.1090(10)°, V=2219 Å3, Z=2, final R=3.97] forms a one dimensional polymeric structure in which alternating [Au(HL)2]+ and Cl ions are linked through intermolecular N–H⋯Cl hydrogen-bonding. In contrast the three-co-ordinate compound [Au{Ph2P(Se)NP(Se)Ph2-Se,Se′}(HL)] [monoclinic, space group P21/a, a=21.6752(5) Å, b=9.1200(10) Å, c=24.0742(7) Å, β=106.080(2)°, V=4573 Å3, Z=4, final R=8.94] forms hydrogen-bonded dimer pairs analogous to that previously observed in non-complexed HL. The X-ray crystal structure of the gold(I) precursor [AuCl(HL)] has also been determined: monoclinic, space group P21/c, a=10.217(8) Å, b=23.256(5) Å, c=20.086(5) Å, β=101.15(4)°, V=4683 Å3, Z=8, final R=5.2. The X-ray crystal structure reveals intermolecular N–H⋯OP hydrogen-bonding between adjacent [AuCl(HL)] molecules forming infinite chains.  相似文献   

6.
New energetic materials, [Ca(MCZ)3(H2O)2](ClO4)2 and {[Ba2(MCZ)4(H2O)21-ClO4)22-ClO4)2]0.5}n, are synthesized and tried as alternatives to common primary explosives. Both the crystal structures were determined by single-crystal X-ray diffraction. The crystal of [Ca(MCZ)3(H2O)2](ClO4)2 belongs to the monoclinic, P21/c space group, a = 14.168(3) Å, b = 8.5938(18) Å, c = 18.889(4) Å, β = 111.234(2)°, V = 2143.8(8) Å3, ρ = 1.6893 g cm?3, and {[Ba2(MCZ)4(H2O)21-ClO4)22-ClO4)2]0.5}n belongs to the triclinic, P-1 space group, a = 7.166(2) Å, b = 10.461(2) Å, c = 11.738(4) Å, α = 110.563(5)°, β = 93.799(2)°, γ = 96.864(3)°, V = 812.4(4) Å3, ρ = 2.185 g cm?3. Their thermal stabilities were investigated by differential scanning calorimetry (DSC), and exothermic peak temperatures with a heating rate of 10 °C min?1 are 249.7 and 181.7 °C, respectively. Non-isothermal reaction kinetics parameters were calculated via both Kissinger’s method and Ozawa-Doyle’s method to work out EK = 124.6 kJ mol?1, lgAK = 10.38, EO = 126.7 kJ mol?1 for the calcium complex and EK = 100.3 kJ mol?1, lgAK = 9.50, EO = 102.6 kJ mol?1 for the barium complex. Additionally, the critical temperatures of thermal explosion, ΔS, ΔH, and ΔG were calculated as ?231.2 J K?1 mol?1, 120.417 kJ mol?1, 236.728 kJ mol?1 for the calcium complex and ?230.6 J K?1 mol?1, 96.723 kJ mol?1, 195.938 kJ mol?1 for the barium complex. As for their explosive nature, sensitivities toward impact and friction were tested. Both [Ca(MCZ)3(H2O)2](ClO4)2 and {[Ba2(MCZ)4(H2O)21-ClO4)22-ClO4)2]0.5}n are insensitive to friction (>360 N); their impact sensitivities are acceptable (20 and 13 J). Both compounds are energetic complexes.  相似文献   

7.
The platinum(II) mixed ligand complexes [PtCl(L1‐6)(dmso)] with six differently substituted thiourea derivatives HL, R2NC(S)NHC(O)R′ (R = Et, R′ = p‐O2N‐Ph: HL1; R = Ph, R′ = p‐O2N‐Ph: HL2; R = R′ = Ph: HL3; R = Et, R′ = o‐Cl‐Ph: HL4; R2N = EtOC(O)N(CH2CH2)2N, R′ = Ph: HL5) and Et2NC(S)N=CNH‐1‐Naph (HL6), as well as the bis(benzoylthioureato‐κO, κS)‐platinum(II) complexes [Pt(L1, 2)2] have been synthesized and characterized by elemental analysis, IR, FAB(+)‐MS, 1H‐NMR, 13C‐NMR, as well as X‐ray structure analysis ([PtCl(L1)(dmso)] and [PtCl(L3, 4)(dmso)]) and ESCA ([PtCl(L1, 2)(dmso)] and [Pt(L1, 2)2]). The mixed ligand complexes [PtCl(L)(dmso)] have a nearly square‐planar coordination at the platinum atoms. After deprotonation, the thiourea derivatives coordinate bidentately via O and S, DMSO bonds monodentately to the PtII atom via S atom in a cis arrangement with respect to the thiocarbonyl sulphur atom. The Pt—S‐bonds to the DMSO are significant shorter than those to the thiocarbonyl‐S atom. In comparison with the unsubstituted case, electron withdrawing substituents at the phenyl group of the benzoyl moiety of the thioureate (p‐NO2, o‐Cl) cause a significant elongation of the Pt—S(dmso)‐bond trans arranged to the benzoyl‐O—Pt‐bond. The ESCA data confirm the found coordination and bonding conditions. The Pt 4f7/2 electron binding energies of the complexes [PtCl(L1, 2)(dmso)] are higher than those of the bis(benzoylthioureato)‐complexes [Pt(L1, 2)2]. This may indicate a withdrawal of electron density from platinum(II) caused by the DMSO ligands.  相似文献   

8.
Three copper(II) complexes, [Cu(L1)(H2O)(ClO4)]·0.5H2O (1), [Cu(L2)(H2O)(ClO4)]·0.5H2O (2), and [Cu(L2)(NCNC(OCH3)NH2)]ClO4 (3), where HL1 = 4-bromo-2-(-(quinolin-8-ylimino)methyl)phenol and HL2 = 1-(-(quinolin-8-ylimino)methyl)naphthalen-2-ol, have been prepared and characterized by elemental analysis, IR, UV–vis and fluorescence spectroscopy and single-crystal X-ray diffraction studies. The copper(II) centers assume five-coordinate square-pyramidal geometries in 1 and 2, whereas square planar copper(II) is present in 3. A methanol molecule has been inserted in the pendant end of the ligated dicyanamide in 3. Various supramolecular architectures are formed by hydrogen bonding, π?π, C–H?π, and lp?π interactions.  相似文献   

9.
A phthalocyanine (4) with four salicylhydrazone ligating groups that are directly linked through oxygen bridges to the macrocyclic core has been synthesized by condensation of tetrakis(4-formylphenoxy)phthalocyaninato zinc(II) (3) with salicylhydrazine. Salicylhydrazine was crystallized in methanol during the synthetic procedure. The crystal structure has triclinic space group P-1 with a = 5.8292(6) Å, b = 7.3039(7) Å, c = 17.9798(18) Å, α = 84.272(8)°, β = 89.184(8)°, γ = 81.469(8)°, and Z = 4. Intramolecular O–H?O and intermolecular O–H?O, N–H?N, N–H?O hydrogen bonds were determined in the crystal structure. In addition, there is a weak C–H?π interaction. Complexation on the periphery to yield tri-nuclear Zn(II)Pcs (57) was performed through the reaction of a Schiff base-substituted phthalocyanine (4) with MnCl2·4H2O, CoCl2·6H2O, or Ni(OAc)2 salts. Fourier transform infrared, 1H NMR, 13C NMR, UV–Vis, ICP-OES (inductively coupled plasma optical emission spectroscopy), mass spectroscopies, and elemental analyses were applied to characterize the prepared compounds. Bleach catalyst activity of the prepared phthalocyanine complexes (57) was examined by the degradation of morin and curcumin, respectively. The catalysts had better activity for color removing in solutions at ambient temperature than to that of tetraacetylethylenediamine (TAED).  相似文献   

10.
11.
This paper describes a procedure for the synthesis of two new volatile complexes, Pd(L1)2 and Pd(L2)2, from sterically hindered methoxy-β-iminoketones, where HL1 = C(CH3)2(OCH3)-C(NH)-CH2-C(O)-C(CH3)3; HL2 = C(CH3)2(OCH3)-C(NH)-CH2-C(O)-CH(CH3)2. Element analysis and IR spectral data are given. The results of full X-ray crystal structure analysis of the complexes are reported. The compounds have molecular structures; the crystals of the complexes have different symmetry groups and unit cell dimensions. The Pd(L1)2 complex molecule has a nonplanar structure; the Pd(L2)2 complex has a cis-structure. The geometrical characteristics obtained for the coordination units are as follows: the Pd-O and Pd-N bond lengths and N-Pd-O chelate angles were estimated at 1.960 Å, 93.7° for Pd(L1)2, and 1.984 Å, 1.976 Å, 92.4° for Pd(L2)2.  相似文献   

12.
Novel mononuclear oxovanadium(IV) and manganese(III) complexes [VO(L1)2·H2O] (1); [VO(L2)2·H2O] (2); [VO(L3)2·H2O] (3); [Mn(L1)2]ClO4·H2O (4); [Mn(L2)2] ClO4·H2O (5); [Mn(L3)2]ClO4·H2O (6) were prepared by condensation of 1 mol of VOSO4·5H2O or Mn(OAc)3· 2H2O with 2 mol of ligand HL1, HL2 or HL3 (where HL1 = 4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2- phenyl-2,4-dihydro-pyrazol-3-one; HL2=4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2-p-tolyl-2,4-dihydro-pyrazol-3-one; HL3=4-{4-[(2-hydroxy-ethyl-amino)-methyl]-3-methyl-5-oxo-4,5-dihydropyrazol-1-yl} benzene sulfonic acid). The resulting complexes were characterized by elemental analyses, molar conductance, magnetic and decomposition temperature measurements, electron spin resonance, FAB mass, IR and electronic spectral studies. From TGA, DTA and DSC, the thermal behaviour and degradation kinetic were studied. Electronic spectra and magnetic susceptibility measurements indicate distorted octahedral stereochemistry of oxovanadium(IV) complexes and regular octahedral stereochemistry of manganese(III) complexes. Hamiltonian and bonding parameters found from ESR spectra indicate the metal ligand bonding is partial covalent. The X-ray single crystal determination of one of the representative ligand was carried out which suggests existence of amine-one tautomeric form in the solid state. The 1H-NMR spectra support the existence of imine-ol form in solution state. The LC-MS studies sustain the1H-NMR result. The electronic structure of the same representative ligand was optimized using 6-311G basis set at HF level ab initio studies to predict the coordinating atoms of the ligand.  相似文献   

13.
2,2-diphenyl-N-(R-carbamothioyl)acetamide (R = diethyl, dipropyl, dibutyl, dihexyl, diphenyl and morpholine-4) and their Ni2+ and Cu2+ complexes have been synthesized and characterized by elemental analyses, IR spectroscopy and 1H-NMR spectroscopy. The spectroscopic data are consistent with the ligand and the metal complexes containing two O, S chelated ligands. 2,2-diphenyl-N-(diethylcarbamothioyl)acetamide, HL1, and bis(2,2-diphenyl-N-(diethylcarbamothioyl)acetamido)nickel(II), Ni(L1)2, were characterized by a single crystal X-ray diffraction study. HL1 complex, C19H22N2OS, crystallizes monoclinic, space group P21/c, with Z = 4, and unit cell parameters a = 14.964(2), b = 13.026(2), c = 9.0123(15) Å, β = 96.314(4)°. Ni(L1)2 complex, C38H42N4O2S2Ni, crystallizes in monoclinic space group P21/c, with Z = 4, and unit cell parameters a = 15.434(6), b = 13.464(5), c = 17.679(7) Å, β = 108.477(11)°. The ligands coordinate bidentate to metal yielding neutral complexes of the type cis-[ML2].  相似文献   

14.
Abstract

A new binuclear complex, [Zn2L2Cl4]·2H2O {L?=?N-aldehyde-N-(4-(benzyloxy)benzyl)-1,4,7triazacyclononane}, was synthesized and characterized by X-ray, elemental analysis, infrared and electronic spectroscopy, and mass spectrometry. The central ion is bridged by the L and lies in a tetrahedral configuration with Zn···Zn distance of 6.283 Å. The complex crystallizes in the triclinic space group Pī. ESI-MS of the complex indicates that the protonated ligand HL+ is the active species. The interaction of HL+ with calf thymus–DNA (CT–DNA) and bovine serum albumin (BSA) was studied by means of various spectroscopic methods, which revealed that HL+ could interact with CT–DNA through groove-binding mode and could quench the intrinsic fluorescence of BSA in a static quenching process. DNA–cleavage experiments indicate that HL+ exhibits efficient DNA–cleavage activity in the presence of H2O2, hydroxyl radical (HO?) may serve as the major cleavage active species, and the pseudo-Michaelis–Menten kinetic parameters (Kcat, KM, Vmax); 2.47?h?1, 2.70?×?10?4 M and 6.68?×?10?4 Mh?1.  相似文献   

15.
Assembly of orotic acid (H3Or, 1,2,3,6-tetrahydro-2,6-dioxo-4-pyrimidinecarboxylic) and Cd(NO3)·6H2O yielded a coordination polymer, [(Cd(Hor)·2.5H2O)2]n (1), which has been characterized by X-ray single-crystal diffraction, TGA, and ?uorescence spectra. Single-crystal X-ray structural analyses reveal that 1 is a hydrogen-bonded binuclear Cd-orotate coordination polymer in which both Cd2+ ions have different coordination environments with identical distorted octahedral geometry. Crystal data for 1: monoclinic, space group P21/n, a = 7.0209(10) Å, b = 13.974(2) Å, c = 17.541(3) Å, β = 98.842(2)°, V = 1700.5(4) Å, Z = 4, R1 = 0.0269, wR2 = 0.0612, θmax = 25.960. The emission spectrum of the Cd-complex recorded with 265 nm excitation wavelength reveals the complex has strong blue luminescence with the peak maximum 420 nm (2.95 eV) as a result of the nπ* and ππ* transitions on the H3Or ligand.  相似文献   

16.
Syntheses and Properties of cis -Diacidophthalocyaninato(2–)thallates(III); Crystal Structure of Tetra(n-butyl)ammonium cis -dinitrito(O,O ′)- and cis -dichlorophthalocyaninato(2–)thallate(III) Blue green cis-diacidophthalocyaninato(2–)thallate(III), cis[Tl(X)2pc2–] (X = Cl, ONO′, NCO) is prepared from iodophthalocyaninato(2–)thallium(III) and the corresponding tetra(n-butyl)ammonium salt, (nBu4N)X in dichloromethane, and isolated as (nBu4N)cis[Tl(X)2pc2–]. (nBu4N)cis[Tl(ONO′)2pc2–] ( 1 ) and (nBu4N)cis[Tl(X)2pc2–] · 0,5 (C2H5)2O ( 2 ) crystallize in the monoclinic space group P21/n with cell parameters for 1: a = 14.496(2) Å, b = 17.293(5) Å, c = 18.293(2) Å, β = 98.76(1)° resp. for 2 : a = 13.146(1) Å, b = 14.204(5) Å, c = 24.900(3) Å, β = 93.88(1)°; Z = 4. In 1 , the octa-coordinated Tl atom is surrounded by four isoindole-N atoms (Niso) and four O atoms of the bidental nitrito(O,O′) ligands in a distorted antiprism. The Tl–Niso distances vary between 2.257(3) and 2.312(3) Å, the Tl–O distances between 2.408(3) and 2.562(3) Å. In 2 , the hexa-coordinated Tl atom ligates four Niso atoms and two Cl atoms in a typical cis-arrangement. The average Tl–Niso distance is 2.276 Å, the average Tl–Cl distance is 2.550 Å. In 1 and 2 , the Tl atom is directed out of the centre of the (Niso)4 plane (CtN) towards the acido ligands (d(Tl–CtN) = 1.144(1) Å in 1 , 1.116(2) Å in 2 ), and the phthalocyaninato ligand is concavely distorted. The vertical displacements of the periphereal C atoms amounts up to 0.82 Å. The optical and vibrational spectra as well as the electrochemical properties are discussed.  相似文献   

17.
A new 1-D alternating copper(II) polymer, [Cu2(L)(OAc)4]n (1) (L = 5-chloro-2-(pyridine-2-yl)benzo[d]thiazole), has been isolated and characterized by single-crystal X-ray diffraction, elemental analysis, IR spectroscopy, and magnetic susceptibility. The complex crystallized in the triclinic space group P-1, a = 8.2277(16) Å, b = 9.4233(19) Å, c = 15.831(3) Å, α = 103.38(3)°, β = 99.95(3)°, γ = 92.70(3)°, V = 1171.3(4) Å3, and comprises a 1-D polymer linked by three kinds of acetate-bridging modes in an alternating manner. UV–visible and fluorescence spectra revealed that 1 is bound to CT-DNA in a partial intercalation mode. Through gel electrophoresis assays, 1 displayed an efficient oxidative cleavage activity on supercoiled plasmid DNA (pUC19) in the presence of H2O2. Magnetic measurements were performed from 2 to 300 K, and the experimental results were satisfactorily reproduced with J1 = –160 ± 20 cm?1, J2 = 5.8 ± 0.2 cm?1, zJ′ = 0.381 ± 0.005 cm?1 and g = 2.1, showing antiferromagnetic coupling between Cu1 and Cu1i, ferromagnetic exchange between Cu2 and Cu2ii, and a weak ferromagnetic molecular field correction accounting for all interspecies interactions.  相似文献   

18.
Two cis-dioxomolybdenum(VI) complexes [MoO2L] (L: L 1, 2 and L: L 2, 3) in a phenol-based sterically encumbered N2O2 ligand environment have been synthesized, and their crystallographic characterizations are reported. The orange crystals of 2 are monoclinic, space group P21/a with unit cell dimensions as a=16.2407(17) Å, b=7.2857(8) Å, c=18.400(2) Å, β=98.002(9)°, Z=4, and d cal=1.486 g cm?3. The light orange crystals of 3, however, are orthorhombic, space group, Pbcn, with unit cell dimensions a=8.3110(12) Å, b=12.637(3) Å, c=34.673(5) Å, Z=4, and d cal=1.187 g cm?3. The structures were refined by a full-matrix least-squares procedure on F 2 to a final R=0.046 (0.055 for 3) using 4944 (3677) all independent data. In both the cases, the Mo atom exists in a distorted octahedral geometry defined by a N2O4 donor set, which features a cis-Mo(–O)2 and a trans-Mo(OPh)2 arrangement. Compound 2 undergoes a quasireversible one-electron reduction at ?1.3 V vs Ag/AgCl reference due to MoVIO2/MoVO2 electron transfer and thus providing a rare example of steric solution to the comproportionation–dimerization problem encountered frequently in the development of valid biomimetic models for the active sites of oxomolybdenum enzymes.  相似文献   

19.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of cis‐(n‐Bu4N)2[Pt(ECN)2(ox)2], E = S, Se By exposure of trans‐(n‐Bu4N)2[Pt(ECN)2(ox)2], E = S and Se, in dichloromethane cis‐(n‐Bu4N)2[Pt(SCN)2(ox)2] ( 1 ) and cis‐(n‐Bu4N)2[Pt(SeCN)2(ox)2] ( 2 ) are formed. The crystal structure of 1 (triclinic, space group P1¯, a = 10.789(1), b = 11.906(1), c = 18.580(1)Å, α = 85.619(10), β = 85.272(10), γ = 75.173(10)°, Z = 2) reveals, that the compound crystallizes as a racemic mixture with C2 point symmetrical complex anions. The bond lengths in both S′‐Pt‐O˙ axes are Pt‐S′ = 2.321 and Pt‐O˙ = 2.048 and in the O‐Pt‐O axis Pt‐O = 2.007Å. The oxalato ligands are nearly plane with O‐C‐C‐O torsion angles of 1.4 — 3.9°. The via S′ bound linear thiocyanate groups are coordinated with Pt‐S′‐C angles of 102.6°. In the vibrational spectra the PtE′ stretching vibrations are observed at 327 — 330 ( 1 ) and 217 — 231 cm—1 ( 2 ). The PtO˙ and PtO stretching vibrations are coupled with internal vibrations of the oxalato ligands and appear in the range of 400 — 800 cm—1. Based on the molecular parameters of the X‐ray determination ( 1 ) and estimated data ( 2 ) the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constants are fd(PtS′) = 2.08, fd(PtSe′) = 1.78, fd(PtO˙) = 2.45 ( 1 ) and 2.27 ( 2 ) and fd(PtO) = 2.65 ( 1 ) and 2.60 mdyn/Å ( 2 ). Taking into account increments of the trans influence a good agreement between observed and calculated frequencies is achieved. The NMR shifts are δ(195Pt) = 4925.9 ( 1 ), 4783.0 ( 2 ) and δ(77Se) = 161.7 ppm with the coupling constant 1J(SePt) = 366.2 Hz.  相似文献   

20.
Two lanthanide complexes, (mnH)2[EuIII(egta)]2·6H2O (1) (H4egta = ethyleneglycol-bis-(2aminoethylether)-N,N,N,N′-tetraacetic acid) and (mnH)4[EuIII2(dtpa)2]·6H2O (2) (H5dtpa = diethylenetriamine-N,N,N,N″,N″-pentaacetic acid), have been synthesized and characterized by FT-IR spectroscopy, thermal analysis, and single-crystal X-ray diffraction. X-ray diffraction reveals that 1 is multinuclear nine-coordinate and crystallizes in the monoclinic crystal system with space group C2/c. The obtained cell dimensions are a = 38.513(3)?Å, b = 13.5877(8)?Å, c = 8.7051(5)?Å, β = 99.6780(10)°, and 4490.6(5)?Å3. Each methylamine (mnH+) cation in 1, through hydrogen bonds, connects three adjacent [EuIII(egta)]? anions. The [EuIII(egta)]? anions connect one another forming a 1-D multinuclear zigzag chain structure along the c-axis. Complex 2 is nine-coordinate binuclear structure with tricapped trigonal prismatic conformation and crystallizing in the monoclinic crystal system, but with space group P21/n. The obtained cell dimensions are a = 9.9132(8)?Å, b = 24.1027(18)?Å, c = 10.7120(10)?Å, β = 109.1220(10)°, and 2418.2(3)?Å3. For 2, there are two kinds of methylamine cations (mnH+) connecting [EuIII2(dtpa)2]4? complex anions and lattice waters through hydrogen bonds, leading to formation of a 2-D ladder-like layer structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号