首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we applied homotopy perturbation method to obtain the solution of the Korteweg‐de Vries Burgers (for short, KdVB) and Lax's seventh‐order KdV (for short, LsKdV) equations. The numerical results show that homotopy perturbation method can be readily implemented to this type of nonlinear equations and excellent accuracy. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

2.
In this article, we present the Homotopy Perturbation Method (Shortly HPM) for obtaining the numerical solutions of the Korteweg‐de Vries Burgers (KdVB) equation. The series solutions are developed and the reccurance relations are given explicity. The initial approximation can be freely chosen with possibly unknown constants which can be determined by imposing the boundary and initial conditions. The results reveal that HPM is very simple and effective. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

3.
《偏微分方程通讯》2013,38(11-12):1653-1695
Abstract

An initial boundary-value problem in a half-strip with one boundary condition for the Korteweg–de Vries equation is considered and results on global well-posedness of this problem are established in Sobolev spaces of various orders, including fractional. Initial and boundary data satisfy natural (or close to natural) conditions, originating from properties of solutions of a corresponding initial-value problem for a linearized KdV equation. An essential part of the study is the investigation of special solutions of a “boundary potential” type for this linearized KdV equation.  相似文献   

4.
The generalized tanh-coth method is used to construct periodic and soliton solutions for a new integrable system, which has been derived from an integrable sixth-order nonlinear wave equation (KdV6). The system is formed by two equations. One of the equations may be considered as a Korteweg-de Vries equation with a source and the second equation is a third-order linear differential equation.  相似文献   

5.
We establish a connection between the fundamental solutions to some classes of linear nonstationary partial differential equations and the fundamental solutions to other nonstationary equations with fewer variables. In particular, reduction enables us to obtain exact formulas for the fundamental solutions of some spatial nonstationary equations of mathematical physics (for example, the Kadomtsev-Petviashvili equation, the Kelvin-Voigt equation, etc.) from the available fundamental solutions to one-dimensional stationary equations.  相似文献   

6.
New discrete equations of the simplest three-point form are considered that generalize the discrete Korteweg-de Vries equation. The properties of solitons, kinks, and oscillatory waves are numerically examined for three types of interactions between neighboring chain elements. An analogy with solutions to limiting continual equations is drawn.  相似文献   

7.
In this paper we consider the long time behavior of solutions to the modified Korteweg-de Vries equation on ?. For sufficiently small, smooth, decaying data we prove global existence and derive modified asymptotics without relying on complete integrability. We also consider the asymptotic completeness problem. Our result uses the method of testing by wave packets, developed in the work of Ifrim and Tataru on the 1d cubic nonlinear Schrödinger and 2d water wave equations.  相似文献   

8.
在本文中,一类新的矩阵型修正Korteweg-de Vries(简记为mmKdV)方程被首次通过RiemannHilbert方法研究,而且,这一方程可通过选取特殊的势矩阵来降阶为我们熟知的耦合型修正Kortewegde Vries方程.从方程对应的Lax对的谱分析入手,作者成功地建立了方程对应的Riemann-Hilbert问题.在无反射势的特殊条件下,mmKdV方程的精确解可由Riemann-Hilbert问题的解给出.而且,基于特殊势矩阵所对应的特殊对称性,作者可以对原有的孤子解进行分类,从而得到一些有趣的解的现象,比如呼吸孤子、钟形孤子等.  相似文献   

9.
Using the special truncated expansion method, the solitary wave solutions are constructed for the compound Korteweg–de Vries–Burgers (KdVB) equation. Exact and explicit solitary wave solutions for a generalized KdVB equation are obtained by introducing a suitable ansatz equation. The generalized two-dimensional KdVB equation is discussed. Some particular cases of the generalized KdVB equation are solved by using these methods.  相似文献   

10.
The Toda lattice and the discrete Korteweg-de Vries equation generalized to two dimensions are studied numerically. The interactions are assumed to be identical in both directions. It is shown that the equations have solutions in the form of plane linear and localized solitons. In contrast to equations integrable by the inverse scattering method, the parameters of solitons change in the course of their interaction and additional wave structures are formed. The basic types of solutions characterizing these processes are presented.  相似文献   

11.
In this work we obtain results on the estimates of low Sobolev norms for solutions of some nonlinear evolution equations, in particular we apply our method for the complex modified Korteweg-de Vries type equation and Benjamin-Ono equation.  相似文献   

12.
This paper is concerned with the asymptotic behavior of solutions of the critical generalized Korteweg-de Vries equation in a bounded interval with a localized damping term. Combining multiplier techniques and compactness arguments it is shown that the problem of exponential decay of the energy is reduced to prove the unique continuation property of weak solutions. A locally uniform stabilization result is derived.

  相似文献   


13.
We investigate the long-time behaviour of solutions to the Korteweg-de Vries equation with a zero order dissipation and an additional forcing term, when the space variable varies over , and prove that it is described by a maximal compact attractor in H 2().  相似文献   

14.
In this paper, we investigate the integrability and equivalence relationships of six coupled Korteweg–de Vries equations. It is shown that the six coupled Korteweg–de Vries equations are identical under certain invertible transformations. We reconsider the matrix representations of the prolongation algebra for the Painlevé integrable coupled Korteweg–de Vries equation in [Appl. Math. Lett. 23 (2010) 665‐669] and propose a new Lax pair of this equation that can be used to construct exact solutions with vanishing boundary conditions. It is also pointed out that all the six coupled Korteweg–de Vries equations have fourth‐order Lax pairs instead of the fifth‐order ones. Moreover, the Painlevé integrability of the six coupled Korteweg–de Vries equations are examined. It is proved that the six coupled Korteweg–de Vries equations are all Painlevé integrable and have the same resonant points, which further determines the equivalence among them. Finally, the auto‐Bäcklund transformation and exact solutions of one of the six coupled Korteweg–de Vries equations are proposed explicitly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
We exhibit a time reversible geometric flow of planar curves which can develop singularities in finite time within the uniform topology. The example is based on the construction of selfsimilar solutions of modified Korteweg-de Vries equation of a given (small) mean.  相似文献   

16.
The two-level linearized and local uncoupled spatial second order and compact difference schemes are derived for the two-component evolutionary system of nonhomogeneous Korteweg-de Vries equations. It is shown by the mathematical induction that these two schemes are uniquely solvable and convergent in a discrete L norm with the convergence order of O(τ2 + h2) and O(τ2 + h4), respectively, where τ and h are the step sizes in time and space. Three numerical examples are given to confirm the theoretical results.  相似文献   

17.
Under investigation in this work is a (2+1)-dimensional generalized Korteweg-de Vries equation, which can be used to describe many nonlinear phenomena in plasma physics. By using the properties of Bell"s polynomial, we obtain the bilinear formalism of this equation. The expression of $N$-soliton solution is established in terms of the Hirota"s bilinear method. Based on the resulting $N$-soliton solutions, we succinctly show its breather wave solutions. Furthermore, with the aid of the corresponding soliton solutions, the $M$-lump solutions are well presented by taking a long wave limit. Two types of hybrid solutions are also represented in detail. Finally, some graphic analysis are provided in order to better understand the propagation characteristics of the obtained solutions.  相似文献   

18.
In this paper, we present results of existence and stability of odd periodic traveling wave solutions for the defocusing mass-critical Korteweg-de Vries equation. The existence of periodic wave trains is obtained by solving a constrained minimization problem. Concerning the stability, we use the Floquet theory to determine the behavior of the first three eigenvalues of the linearized operator around the wave, as well as the positiveness of the associated Hessian matrix.  相似文献   

19.
We study the existence and stability of periodic traveling-wave solutions for complex modified Korteweg-de Vries equation. We also discuss the problem of uniform continuity of the data-solution mapping.  相似文献   

20.
A mathematical model of nonlinear wave propagation in a pipeline is constructed. The Korteweg-de Vries equation is derived by determining asymptotic solutions and changing variables. A particular solution to the model equations is found that has the fluid velocity function in the form of a solitary wave. Thus, the class of nonlinear fluid dynamics problems described by the KdV equation is expanded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号