首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
An embedded pair of exponentially fitted explicit Runge–Kutta (RK) methods for the numerical integration of IVPs with oscillatory solutions is derived. This pair is based on the exponentially fitted explicit RK method constructed in Vanden Berghe et al., and we confirm that the methods which constitute the pair have algebraic order 4 and 3. Some numerical experiments show the efficiency of our pair when it is compared with the variable step code proposed by Vanden Berghe et al. (J. Comput. Appl. Math. 125 (2000) 107).  相似文献   

2.
The theory of Runge-Kutta methods for problems of the form y′?=?f(y) is extended to include the second derivative y′′?=?g(y):?=?f′(y)f(y). We present an approach to the order conditions based on Butcher’s algebraic theory of trees (Butcher, Math Comp 26:79–106, 1972), and derive methods that take advantage of cheap computations of the second derivatives. Only explicit methods are considered here where attention is given to the construction of methods that involve one evaluation of f and many evaluations of g per step. Methods with stages up to five and of order up to seven including some embedded pairs are presented. The first part of the paper discusses a theoretical formulation used for the derivation of these methods which are also of wider applicability. The second part presents experimental results for non-stiff and mildly stiff problems. The methods include those with the computation of one second derivative (plus many first derivatives) per step, and embedded methods for changing stepsize as well as those involving one first derivative (plus many second derivatives) per step. The experiments have been performed on standard problems and comparisons made with some standard explicit Runge-Kutta methods.  相似文献   

3.
Apart from specific methods amenable to specific problems, symplectic Runge-Kutta methods are necessarily implicit. The aim of this paper is to construct explicit Runge-Kutta methods which mimic symplectic ones as far as the linear growth of the global error is concerned. Such method of orderp have to bepseudo-symplectic of pseudosymplecticness order2p, i.e. to preserve the symplectic form to within ⊗(h 2p )-terms. Pseudo-symplecticness conditions are then derived and the effective construction of methods discussed. Finally, the performances of the new methods are illustrated on several test problems.  相似文献   

4.
A new kind of trigonometrically fitted embedded pair of explicit ARKN methods for the numerical integration of perturbed oscillators is presented in this paper. This new pair is based on the trigonometrically fitted ARKN method of order five derived by Yang and Wu in [H.L. Yang, X.Y. Wu, Trigonometrically-fitted ARKN methods for perturbed oscillators, Appl. Numer. Math. 9 (2008) 1375–1395]. We analyze the stability properties, phase-lag (dispersion) and dissipation of the higher-order method of the new pair. Numerical experiments carried out show that our new embedded pair is very competitive in comparison with the embedded pairs proposed in the scientific literature.  相似文献   

5.
A one-step 7-stage Hermite-Birkhoff-Taylor method of order 11, denoted by HBT(11)7, is constructed for solving nonstiff first-order initial value problems y=f(t,y), y(t0)=y0. The method adds the derivatives y to y(6), used in Taylor methods, to a 7-stage Runge-Kutta method of order 6. Forcing an expansion of the numerical solution to agree with a Taylor expansion of the true solution to order 11 leads to Taylor- and Runge-Kutta-type order conditions. These conditions are reorganized into Vandermonde-type linear systems whose solutions are the coefficients of the method. The new method has a larger scaled interval of absolute stability than the Dormand-Prince DP87 and a larger unscaled interval of absolute stability than the Taylor method, T11, of order 11. HBT(11)7 is superior to DP87 and T11 in solving several problems often used to test higher-order ODE solvers on the basis of the number of steps, CPU time, and maximum global error. Numerical results show the benefit of adding high-order derivatives to Runge-Kutta methods.  相似文献   

6.
In this paper, trigonometrically fitted multi-step Runge-Kutta (TFMSRK) methods for the numerical integration of oscillatory initial value problems are proposed and studied. TFMSRK methods inherit the frame of multi-step Runge-Kutta (MSRK) methods and integrate exactly the problem whose solutions can be expressed as the linear combinations of functions from the set of \(\{\exp (\mathrm {i}wt),\exp (-\mathrm {i}wt)\},\) or equivalently the set \(\{\cos (wt),\sin (wt)\}\), where w represents an approximation of the main frequency of the problem. The general order conditions are given and four new explicit TFMSRK methods with order three and four, respectively, are constructed. Stability of the new methods is examined and the corresponding regions of stability are depicted. Numerical results show that our new methods are more efficient in comparison with other well-known high quality methods proposed in the scientific literature.  相似文献   

7.
In this paper,we analyze the explicit Runge-Kutta discontinuous Galerkin(RKDG)methods for the semilinear hyperbolic system of a correlated random walk model describing movement of animals and cells in biology.The RKDG methods use a third order explicit total-variation-diminishing Runge-Kutta(TVDRK3)time discretization and upwinding numerical fluxes.By using the energy method,under a standard CourantFriedrichs-Lewy(CFL)condition,we obtain L2stability for general solutions and a priori error estimates when the solutions are smooth enough.The theoretical results are proved for piecewise polynomials with any degree k 1.Finally,since the solutions to this system are non-negative,we discuss a positivity-preserving limiter to preserve positivity without compromising accuracy.Numerical results are provided to demonstrate these RKDG methods.  相似文献   

8.
LetC ub ( $\mathbb{J}$ , X) denote the Banach space of all uniformly continuous bounded functions defined on $\mathbb{J}$ 2 ε {?+, ?} with values in a Banach spaceX. Let ? be a class fromC ub( $\mathbb{J}$ ,X). We introduce a spectrumsp?(φ) of a functionφ εC ub (?,X) with respect to ?. This notion of spectrum enables us to investigate all twice differentiable bounded uniformly continuous solutions on ? to the abstract Cauchy problem (*)ω′(t) =(t) +φ(t),φ(0) =x,φ ε ?, whereA is the generator of aC 0-semigroupT(t) of bounded operators. Ifφ = 0 andσ(A) ∩i? is countable, all bounded uniformly continuous mild solutions on ?+ to (*) are studied. We prove the bound-edness and uniform continuity of all mild solutions on ?+ in the cases (i)T(t) is a uniformly exponentially stableC 0-semigroup andφ εC ub(?,X); (ii)T(t) is a uniformly bounded analyticC 0-semigroup,φ εC ub (?,X) andσ(A) ∩i sp(φ) = Ø. Under the condition (i) if the restriction ofφ to ?+ belongs to ? = ?(?+,X), then the solutions belong to ?. In case (ii) if the restriction ofφ to ?+ belongs to ? = ?(?+,X), andT(t) is almost periodic, then the solutions belong to ?. The existence of mild solutions on ? to (*) is also discussed.  相似文献   

9.
In this paperE-stable methods ofO(h 4),O(h 8) andO(h 12) are derived for the direct numerical integration of initial value problems of second order differential equations with exponentially decreasing solutions. Numerical results are presented for both linear and nonlinear problems.  相似文献   

10.
11.
The existence and construction of symplectic 2s-stage variable coefficients Runge-Kutta (RK) methods that integrate exactly IVPs whose solution is a trigonometrical polynomial of order s with a given frequency ω is considered. The resulting methods, that can be considered as trigonometrical collocation methods, are fully implicit, symmetric and symplectic RK methods with variable nodes and coefficients that are even functions of ν=ω h (h is the step size), and for ω→0 they tend to the conventional RK Gauss methods. The present analysis extends previous results on two-stage symplectic exponentially fitted integrators of Van de Vyver (Comput. Phys. Commun. 174: 255–262, 2006) and Calvo et al. (J. Comput. Appl. Math. 218: 421–434, 2008) to symmetric and symplectic trigonometrically fitted methods of high order. The algebraic order of the trigonometrically fitted symmetric and symplectic 2s-stage methods is shown to be 4s like in conventional RK Gauss methods. Finally, some numerical experiments with oscillatory Hamiltonian systems are presented.  相似文献   

12.
In this paper, we are concerned with the error analysis for the two-step extended Runge-Kutta-Nyström-type (TSERKN) methods [Comput. Phys. Comm. 182 (2011) 2486–2507] for multi-frequency and multidimensional oscillatory systems y″(t) + My(t) = f(t, y(t)), where high-frequency oscillations in the solutions are generated by the linear part My(t). TSERKN methods extend the two-step hybrid methods [IMA J. Numer. Anal. 23 (2003) 197–220] by reforming both the internal stages and the updates so that they are adapted to the oscillatory properties of the exact solutions. However, the global error analysis for the TSERKN methods has not been investigated. In this paper we construct a new three-stage explicit TSERKN method of order four and present the global error bound for the new method, which is proved to be independent of ∥M∥ under suitable assumptions. This property of our new method is very important for solving highly oscillatory systems (1), where ∥M∥ may be arbitrarily large. We also analyze the stability and phase properties for the new method. Numerical experiments are included and the numerical results show that the new method is very competitive and promising compared with the well-known high quality methods proposed in the scientific literature.  相似文献   

13.
In this paper,we study the initial-boundary value problem of porous medium equation ut = Δum + h(t)up in a cone D =(0,∞) ×Ω,where h(t) ~ tσ.Let ω1 denote the smallest Dirichlet eigenvalue for the Laplace-Beltrami operator on Ω and let l denote the positive root of l 2 +(n 2)l = ω1.We prove that if m p ≤ m + 2(σ+1) n+l + σ(m 1),then the problem has no global nonnegative solutions for any nonnegative u0 unless u0 = 0;if p m + 2(σ+1) n+l + σ(m1),then the problem has global solutions for some u 0 ≥ 0.  相似文献   

14.
Two derivative Runge-Kutta methods are Runge-Kutta methods for problems of the form y = f(y) that include the second derivative y = g(y) = f(y)f(y) and were developed in the work of Chan and Tsai (Numer. Alg. 53, 171–194 2010). Explicit methods were considered and attention was given to the construction of methods that involve one evaluation of f and many evaluations of g per step. In this work, we consider trigonometrically fitted two derivative explicit Runge-Kutta methods of the general case that use several evaluations of f and g per step; trigonometrically fitting conditions for this general case are given. Attention is given to the construction of methods that involve several evaluations of f and one evaluation of g per step. We modify methods with stages up to four, with three f and one g evaluation and with four f and one g, evaluation based on the fourth and fifth order methods presented in Chan and Tsai (Numer. Alg. 53, 171–194 2010). We provide numerical results to demonstrate the efficiency of the new methods using four test problems.  相似文献   

15.
The bifurcation function for an elliptic boundary value problem is a vector field B(ω) on R d whose zeros are in a one‐to‐one correspondence with the solutions of the boundary value problem. Finite element approximations of the boundary value problem are shown to give rise to an approximate bifurcation function Bh(ω), which is also a vector field on R d. Estimates of the difference B(ω) − Bh(ω) are derived, and methods for computing Bh(ω) are discussed. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 194–213, 2000  相似文献   

16.
In this paper, a Galerkin type algorithm is given for the numerical solution of L(x)=(r(t)x'(t))'-p(t)x(t)=g(t); x(a)=xa, x'(a)=x'a, where r (t)>f0, and Spline hat functions form the approximating basis. Using the related quadratic form, a two-step difference equation is derived for the numerical solutions. A discrete Gronwall type lemma is then used to show that the error at the node points satisfies ek=0(h2). If e(t) is the error function on a?t?b; it is also shown (in a variety of norms) that e(t)?Ch2 and e'(t)?C1h. Test case runs are also included. A (one step) Richardson or Rhomberg type procedure is used to show that eRk=0(h4). Thus our results are comparable to Runge-Kutta with half the function evaluations.  相似文献   

17.
We explain in this Note how to obtain an exponentially small equivalent of a bioscillatory integral when it involves solutions of a nonlinear differential equation. The method proposed in this Note enables us to study the problem of existence of homoclinic connections for vector fields admitting a (iω0)2iω1 resonance at the origin. This problem could not be solved by a direct application of the classical Melnikov method since the Melnikov function is given in this case by an exponentially small bi-oscillatory integral.  相似文献   

18.
The paper deals with the numerical approximation of the HUM control of the 2D wave equation. Most of the discrete models obtained with classical finite difference or finite element methods do not produce convergent sequences of discrete controls, as the mesh size h and the time step Δt go to zero. We introduce a family of fully-discrete schemes, nondispersive, stable under the condition \(\Delta t\leq h\slash\sqrt{2}\) and uniformly controllable with respect to h and Δt. These implicit schemes differ from the usual explicit one (obtained with leapfrog time approximation and five point spatial approximations) by the addition of terms proportional to h 2 and Δt 2. Numerical experiments for nonsmooth initial conditions on the unit square using a conjugate gradient algorithm indicate the excellent performance of the schemes.  相似文献   

19.
In this paper, we consider the existence and multiplicity of positive periodic solutions for first-order vector differential equation x(t)+f(t,x(t))=0, a.e. t∈[0,ω] under the periodic boundary value condition x(0)=x(ω). Here ω is a positive constant, and is a Carathéodory function. Some existence and multiplicity results of positive periodic solutions are derived by using a fixed point theorem in cones.  相似文献   

20.
Girth pairs were introduced by Harary and Kovács [Regular graphs with given girth pair, J. Graph Theory 7 (1983) 209-218]. The odd girth (even girth) of a graph is the length of a shortest odd (even) cycle. Let g denote the smaller of the odd and even girths, and let h denote the larger. Then (g,h) is called the girth pair of the graph. In this paper we prove that a graph with girth pair (g,h) such that g is odd and h?g+3 is even has high (vertex-)connectivity if its diameter is at most h-3. The edge version of all results is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号