首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study advantages of numerical integration by quasi-consistent Nordsieck formulas. All quasi-consistent numerical methods possess at least one important property for practical use, which has not attracted attention yet, i.e. the global error of a quasi-consistent method has the same order as its local error. This means that the usual local error control will produce a numerical solution for the prescribed accuracy requirement if the principal term of the local error dominates strongly over remaining terms. In other words, the global error control can be as cheap as the local error control in the methods under discussion.  相似文献   

2.
We consider explicit two-step peer methods for the solution of nonstiff differential systems. By an additional condition a subclass of optimally zero-stable methods is identified that is superconvergent of order p=s+1p=s+1, where ss is the number of stages. The new condition allows us to reduce the number of coefficients in a numerical search for good methods. We present methods with 4–7 stages which are tested in FORTRAN90 and compared with DOPRI5 and DOP853. The results confirm the high potential of the new class of methods.  相似文献   

3.
The class of linearly-implicit parallel two-step peer W-methods has been designed recently for efficient numerical solutions of stiff ordinary differential equations. Those schemes allow for parallelism across the method, that is an important feature for implementation on modern computational devices. Most importantly, all stage values of those methods possess the same properties in terms of stability and accuracy of numerical integration. This property results in the fact that no order reduction occurs when they are applied to very stiff problems. In this paper, we develop parallel local and global error estimation schemes that allow the numerical solution to be computed for a user-supplied accuracy requirement in automatic mode. An algorithm of such global error control and other technical particulars are also discussed here. Numerical examples confirm efficiency of the presented error estimation and stepsize control algorithm on a number of test problems with known exact solutions, including nonstiff, stiff, very stiff and large-scale differential equations. A comparison with the well-known stiff solver RODAS is also shown.  相似文献   

4.
In this paper we discuss a class of numerical algorithms termed one-leg methods. This concept was introduced by Dahlquist in 1975 with the purpose of studying nonlinear stability properties of multistep methods for ordinary differential equations. Later, it was found out that these methods are themselves suitable for numerical integration because of good stability. Here, we investigate one-leg formulas on nonuniform grids. We prove that there exist zero-stable one-leg variable-coefficient methods at least up to order 11 and give examples of two-step methods of orders 2 and 3. In this paper we also develop local and global error estimation techniques for one-leg methods and implement them with the local–global step size selection suggested by Kulikov and Shindin in 1999. The goal of this error control is to obtain automatically numerical solutions for any reasonable accuracy set by the user. We show that the error control is more complicated in one-leg methods, especially when applied to stiff problems. Thus, we adapt our local–global step size selection strategy to one-leg methods.  相似文献   

5.
Two new embedded pairs of exponentially fitted explicit Runge-Kutta methods with four and five stages for the numerical integration of initial value problems with oscillatory or periodic solutions are developed. In these methods, for a given fixed ω the coefficients of the formulae of the pair are selected so that they integrate exactly systems with solutions in the linear space generated by {sinh(ωt),cosh(ωt)}, the estimate of the local error behaves as O(h4) and the high-order formula has fourth-order accuracy when the stepsize h→0. These new pairs are compared with another one proposed by Franco [J.M. Franco, An embedded pair of exponentially fitted explicit Runge-Kutta methods, J. Comput. Appl. Math. 149 (2002) 407-414] on several problems to test the efficiency of the new methods.  相似文献   

6.
How can small-scale parallelism best be exploited in the solution of nonstiff initial value problems? It is generally accepted that only modest gains inefficiency are possible, and it is often the case that “fast” parallel algorithms have quite crude error control and stepsize selection components. In this paper we consider the possibility of using parallelism to improvereliability andfunctionality rather than efficiency. We present an algorithm that can be used with any explicit Runge-Kutta formula. The basic idea is to take several smaller substeps in parallel with the main step. The substeps provide an interpolation facility that is essentially free, and the error control strategy can then be based on a defect (residual) sample. If the number of processors exceeds (p ? 1)/2, wherep is the order of the Runge-Kutta formula, then the interpolant and the error control scheme satisfy very strong reliability conditions. Further, for a given orderp, the asymptotically optimal values for the substep lengths are independent of the problem and formula and hence can be computed a priori. Theoretical comparisons between the parallel algorithm and optimal sequential algorithms at various orders are given. We also report on numerical tests of the reliability and efficiency of the new algorithm, and give some parallel timing statistics from a 4-processor machine.  相似文献   

7.
Unconditionally stable explicit methods for parabolic equations   总被引:2,自引:0,他引:2  
Summary This paper discussesrational Runge-Kutta methods for stiff differential equations of high dimensions. These methods are explicit and in addition do not require the computation or storage of the Jacobian. A stability analysis (based onn-dimensional linear equations) is given. A second orderA 0-stable method with embedded error control is constructed and numerical results of stiff problems originating from linear and nonlinear parabolic equations are presented.  相似文献   

8.
The so-called two-step peer methods for the numerical solution of Initial Value Problems (IVP) in differential systems were introduced by R. Weiner, B.A. Schmitt and coworkers as a tool to solve different types of IVPs either in sequential or parallel computers. These methods combine the advantages of Runge-Kutta (RK) and multistep methods to obtain high stage order and therefore provide in a natural way a dense output. In particular, several explicit peer methods have been proved to be competitive with standard RK methods in a wide selection of non-stiff test problems.The aim of this paper is to propose an alternative procedure to construct families of explicit two step peer methods in which the available parameters appear in a transparent way. This allows us to obtain families of fixed stepsize s stage methods with stage order 2s−1, which provide dense output without extra cost, depending on some free parameters that can be selected taking into account the stability properties and leading error terms. A study of the extension of these methods to variable stepsize is also carried out. Optimal s stage methods with s=2,3 are derived.  相似文献   

9.
A numerical method based on B-spline is developed to solve the general nonlinear two-point boundary value problems up to order 6. The standard formulation of sextic spline for the solution of boundary value problems leads to non-optimal approximations. In order to derive higher orders of accuracy, high order perturbations of the problem are generated and applied to construct the numerical algorithm. The error analysis and convergence properties of the method are studied via Green’s function approach. O(h6) global error estimates are obtained for numerical solution of these classes of problems. Numerical results are given to illustrate the efficiency of the proposed method. Results of numerical experiments verify the theoretical behavior of the orders of convergence.  相似文献   

10.
There are two parts in this paper. In the first part we consider an overdetermined system of differential-algebraic equations (DAEs). We are particularly concerned with Hamiltonian and Lagrangian systems with holonomic constraints. The main motivation is in finding methods based on Gauss coefficients, preserving not only the constraints, symmetry, symplecticness, and variational nature of trajectories of holonomically constrained Hamiltonian and Lagrangian systems, but also having optimal order of convergence. The new class of (s,s)(s,s)-Gauss–Lobatto specialized partitioned additive Runge–Kutta (SPARK) methods uses greatly the structure of the DAEs and possesses all desired properties. In the second part we propose a unified approach for the solution of ordinary differential equations (ODEs) mixing analytical solutions and numerical approximations. The basic idea is to consider local models which can be solved efficiently, for example analytically, and to incorporate their solution into a global procedure based on standard numerical integration methods for the correction. In order to preserve also symmetry we define the new class of symmetrized Runge–Kutta methods with local model (SRKLM).  相似文献   

11.
In this paper it is shown that the local discretization error ofs-stage singly-implicit methods of orderp can be estimated by embedding these methods intos-stage two-step Runge-Kutta methods of orderp+1, wherep=s orp=s+1. These error estimates do not require any extra evaluations of the right hand side of the differential equations. This is in contrast with the error estimation schemes based on embedded pairs of two singly-implicit methods proposed by Burrage.The work of A. Bellen and M. Zennaro was supported by the CNR and MPI. The work of Z. Jackiewicz was supported by the CNR and by the NSF under grant DMS-8520900.  相似文献   

12.
A procedure for the construction of high-order explicit parallel Runge-Kutta-Nyström (RKN) methods for solving second-order nonstiff initial value problems (IVPs) is analyzed. The analysis reveals that starting the procedure with a reference symmetric RKN method it is possible to construct high-order RKN schemes which can be implemented in parallel on a small number of processors. These schemes are defined by means of a convex combination of k disjoint si-stage explicit RKN methods which are constructed by connecting si steps of a reference explicit symmetric method. Based on the reference second-order Störmer-Verlet methods we derive a family of high-order explicit parallel schemes which can be implemented in variable-step codes without additional cost. The numerical experiments carried out show that the new parallel schemes are more efficient than some sequential and parallel codes proposed in the scientific literature for solving second-order nonstiff IVPs.  相似文献   

13.
An improved version of rectangular method (IRM) is introduced in this paper to numerically solve the stochastic Volterra equation (SVE). We focus on studying the order of error between the numerical and exact solutions, which is improved to O(h). Furthermore, an explicit form of the IRM scheme is introduced and its convergence is established. A numerical example has also been presented to show the feasibility of the methods.  相似文献   

14.
Aubry and Chartier introduced (1998) the concept of pseudo-symplecticness in order to construct explicit Runge-Kutta methods, which mimic symplectic ones. Of particular interest are methods of order (p, 2p), i.e., of orderp and pseudo-symplecticness order 2p, for which the growth of the global error remains linear. The aim of this note is to show that the lower bound for the minimal number of stages can be achieved forp=4 andp=5.  相似文献   

15.
A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk’s second-order rational, and van Niekerk’s third-order rational methods are presented.  相似文献   

16.
The potential for adaptive explicit Runge–Kutta (ERK) codes to produce global errors that decrease linearly as a function of the error tolerance is studied. It is shown that this desirable property may not hold, in general, if the leading term of the locally computed error estimate passes through zero. However, it is also shown that certain methods are insensitive to a vanishing leading term. Moreover, a new stepchanging policy is introduced that, at negligible extra cost, ensures a robust global error behaviour. The results are supported by theoretical and numerical analysis on widely used formulas and test problems. Overall, the modified stepchanging strategy allows a strong guarantee to be attached to the complete numerical process. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
The Falkner method is a multistep scheme intended for the numerical solution of second-order initial value problems where the first derivative does appear explicitly. In this paper, we develop a procedure to obtain k-step Falkner methods (explicit and implicit) in their variable step-size versions, providing recurrence formulas to compute the coefficients efficiently. Considering a pair of explicit and implicit formulae, these may be implemented in predictor–corrector mode.  相似文献   

18.
A one-step 7-stage Hermite-Birkhoff-Taylor method of order 11, denoted by HBT(11)7, is constructed for solving nonstiff first-order initial value problems y=f(t,y), y(t0)=y0. The method adds the derivatives y to y(6), used in Taylor methods, to a 7-stage Runge-Kutta method of order 6. Forcing an expansion of the numerical solution to agree with a Taylor expansion of the true solution to order 11 leads to Taylor- and Runge-Kutta-type order conditions. These conditions are reorganized into Vandermonde-type linear systems whose solutions are the coefficients of the method. The new method has a larger scaled interval of absolute stability than the Dormand-Prince DP87 and a larger unscaled interval of absolute stability than the Taylor method, T11, of order 11. HBT(11)7 is superior to DP87 and T11 in solving several problems often used to test higher-order ODE solvers on the basis of the number of steps, CPU time, and maximum global error. Numerical results show the benefit of adding high-order derivatives to Runge-Kutta methods.  相似文献   

19.
In this article, we develop an explicit symmetric linear phase-fitted four-step method with a free coefficient as parameter. The parameter is used for the optimization of the method in order to solve efficiently the Schrödinger equation and related oscillatory problems. We evaluate the local truncation error and the interval of periodicity as functions of the parameter. We reveal a direct relationship between the periodicity interval and the local truncation error. We also measure the efficiency of the new method for a wide range of possible values of the parameter and compare it to other well known methods from the literature. The analysis and the numerical results help us to determine the optimal values of the parameter, which render the new method highly efficient.  相似文献   

20.
The phenomenon is studied of reducing the order of convergence by one in some classes of variable step size Nordsieck formulas as applied to the solution of the initial value problem for a first-order ordinary differential equation. This phenomenon is caused by the fact that the convergence of fixed step size Nordsieck methods requires weaker quasi-consistency than classical Runge-Kutta formulas, which require consistency up to a certain order. In other words, quasi-consistent Nordsieck methods on fixed step size meshes have a higher order of convergence than on variable step size ones. This fact creates certain difficulties in the automatic error control of these methods. It is shown how quasi-consistent methods can be modified so that the high order of convergence is preserved on variable step size meshes. The regular techniques proposed can be applied to any quasi-consistent Nordsieck methods. Specifically, it is shown how this technique performs for Nordsieck methods based on the multistep Adams-Moulton formulas, which are the most popular quasi-consistent methods. The theoretical conclusions of this paper are confirmed by the numerical results obtained for a test problem with a known solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号