首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The synthesis of dendritic dipeptides (4-3,4-3,5)12G2-CH2-X-L-Tyr-L-Ala-OMe with X = Boc, Moc, and Ac; their self-assembly in bulk and in solution; and the structural and retrostructural analysis of their supramolecular helical porous assemblies are reported. The dimensions, structure, internal order, thermal stability of the supramolecular helical pores, and conformations of the dendron and supramolecular dendrimer are programmed by the nature of the protective groups of the dipeptide. The ability of the protective groups to program the structure of the helical pore reveals the simplest design strategy that complements the more complex strategies based on the architecture of the dendron, the stereochemistry, and the structure of the dipeptide.  相似文献   

2.
The synthesis of dendritic dipeptides (4-3,4-3,5)12G2-CH2-Boc-L-Tyr-X-OMe where X = Gly, L-Val, L-Leu, L-Ile, L-Phe, and L-Pro is reported. Their self-assembly in bulk and in solution and the structural and retrostructural analysis of their periodic assemblies were compared to those of the previously reported and currently reinvestigated dendritic dipeptides with X = L-Ala. All dendritic dipeptides containing as X nonpolar alpha-amino acids self-assemble into helical porous columns. The substituent of X programs the structure of the helical pore and the resulting periodic array, in spite of the fact that its molar mass represents only between 0.05 and 4.77% from the molar mass of the dendritic dipeptide. In addition to the various 2-D columnar lattices, the dendritic dipeptides based on L-Ala, L-Leu, and L-Phe self-organize into 3-D hexagonal columnar crystals while those based on L-Val and L-Ile into an unknown columnar crystal. The principles via which the aliphatic and aromatic substituents of X program the structure of the helical pores indicate synthetic pathways to helical pores with bioinspired functions based on artificial nonpolar alpha-amino acids.  相似文献   

3.
Strong amplification of chirality occurs in dynamic, but highly ordered, helical columns in n-butanol, for which one chiral seed molecule suffices to render a column of 400 molecules to become homochiral. The chiral columns are formed in a thermally dependent stepwise process. The transition from achiral stacks to helical columns is highly cooperative owing to well-defined intermolecular interactions. `Sergeant and Soldiers' measurements allow for the calculation of the association constant and cooperativity length of the homochiral segments. The `Sergeant and Soldiers' data on the number of molecules within a column show a strikingly good match with data obtained from a theoretical model describing the self-assembly of the discotic molecules as a function of temperature and concentration.  相似文献   

4.
The present paper reports uniqueness of a simple, programmed design of disk-shaped homochiral nickel phthalocyanine (Pc) molecules bearing four enantiomerically pure 1-(p-tolyl)ethylaminocarbonyl groups at their peripheral positions, (Pc-(R) and Pc-(S)), and their controlled self-organization into mesoscopic supramolecular helical fibers with a preferential handedness in solution and onto solid surfaces. A combination of four fundamental intermolecular interactions, including quadruple hydrogen bonding, pi-pi stacking, homochiral interactions of the enantiopure bulky aralkyl entities, and noncoordinating nature of nickel ion of the Pc molecules afforded a high thermal stability of the Pc self-assembly in chloroform (CHCl(3)), tetrahydrofuran, and o-dichlorobenzene and onto hydrophilic mica and hydrophobic HOPG surfaces. A higher-ordered helical self-assembly of Pc disks was observed in these solutions (approximately 200 Pc molecules), while the self-assembly was completely dissociated into monomeric species in N,N-dimethylformamide due to a loss of hydrogen-bonding interactions between Pc molecules. Supramolecular chirality in the hierarchical self-assembly of Pc molecules originated from the presence of (R)- or (S)-chiral centers in the peripheral tails, which rotate noncovalently linked molecular building blocks to effectively form the helical architectures. The helical Pc nanofibers dissolved in CHCl(3), estimated to be ca. 70 nm from peak molecular weight obtained by SEC analysis, acts as a building block for higher-order helical fibers (ca. 1 microm) at single molecular level on the solid surfaces, as demonstrated by the dynamic force mode atomic force microscopy. Regardless of hydrophilic and hydrophobic substrates, the interaction between these Pc molecules and the solid surfaces could not affect the morphology of helical assemblies, indicating a unique robustness of these assemblies.  相似文献   

5.
Scanning tunnelling microscope observations at the 1‐phenyloctane/graphite interface reveal how chiral structural information at the molecular level is transferred and expressed structurally at the 2D supramolecular level for a porous system. The chirality of self‐assembled molecular networks formed by chiral dehydrobenzo[12]annulene (cDBA) derivatives having three chiral chains and three achiral chains, alternatingly, is compared with those of cDBAs having six chiral chains reported previously. While for all cDBAs homochiral surfaces are formed, their handedness is not simply a reflection of the absolute configuration of the stereogenic centres. Both the number of stereogenic centres as well as the length of the achiral chains determine the supramolecular handedness, providing a deep insight into the supramolecular chirality induction mechanisms at play. Moreover, these cDBAs act to induce chirality in porous networks formed by achiral DBAs.  相似文献   

6.
Herein, we demonstrate that with the widespread theme of residue patterning and stereochemical restraints of self-complimenting proteinogenic amino acids, a new and rich class of homomeric dipeptides exhibiting two-dimensional fluid aggregates with hierarchical ordering can be obtained. In particular, a simple way of achieving a class of functional dipeptides, wherein the first and the second residues chosen are L-/D-alanines and L-/D-leucines, has been accomplished. The supramolecules synthesized can be regarded as intermediates between polycatenars and taper-shaped amphiphiles because they possess two lipophilic segments interlinked by a peptide unit (spacer). Two pairs of enantiomers and their respective diastereomers derived from these amino acids are evidenced to self-organize into a helical columnar phase through hydrogen bonding by means of FTIR, UV/Vis, and chiroptical circular dichroism (CD) spectral analyses as well as by optical, calorimetric, electrical switching, and X-ray studies. The CD and X-ray studies have revealed that the form chirality (handedness) and the magnitude of out-of-plane fluctuations of the lattice planes of the fluid supramolecular columnar structures are solely directed by the stereochemistry encoded in the spacer. Of special significance, the less frequently found oblique helical columnar phase formed by a pair of enantiomers derived from L-/D-alanines, unlike those derived from other amino acids, exhibit ferroelectric behavior; the measured spontaneous polarization is as high as 440 nC cm(-2). Besides, all these supramolecules form stable organogels in ethanol and the CD and SEM studies on a representative gel suggest the presence of helical structures.  相似文献   

7.
Aqueous solutions of the achiral, monomeric, nucleobase mimics (2,4,6‐triaminopyrimidine, TAP, and a cyanuric acid derivative, CyCo6) spontaneously assemble into macroscopic homochiral domains of supramolecular polymers. These assemblies exhibit a high degree of chiral amplification. Addition of a small quantity of one handedness of a chiral derivative of CyCo6 generates exclusively homochiral structures. This system exhibits the highest reported degree of chiral amplification for dynamic helical polymers or supramolecular helices. Significantly, homochiral polymers comprised of hexameric rosettes with structural features that resemble nucleic acids are formed from mixtures of cyanuric acid (Cy) and ribonucleotides (l‐, d ‐pTARC) that arise spontaneously from the reaction of TAP with the sugars. These findings support the hypothesis that nucleic acid homochirality was a result of symmetry breaking at the supramolecular polymer level.  相似文献   

8.
Antipodal twisted helical ribbons with lamellar bilayer structure were obtained by self-assembly of chiral amphiphilic molecules in water and water/ethanol. The handedness inversion of the molecular arrangement in these antipodal helical ribbons was investigated by using chiroptical spectroscopy and molecular probes in their antipodal mesoporous silica assemblies synthesized through pairing interaction between the head group of the chiral amphiphilic molecules and a co-structure-directing agent. The supramolecular chirality is imprinted in the pore surface through the organic group of the co-structure-directing agent. The mirror-image diffuse-reflectance circular dichroism spectra of the conjugated discotic probing molecule introduced into their supramolecular chiral imprinted mesoporous silica demonstrated the origin of inverse chirality from the antipodal helical stacking of the molecules.  相似文献   

9.
The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring‐open diarylethenes is doped with a small amount of their chiral, ring‐closed counterpart. The molecules co‐assemble into helical fibers through hydrogen bonding and the handedness of the fibers is biased by the chiral, ring‐closed diarylethene. Photochemical ring closure of the open diarylethene yields the ring‐closed product, which is enriched in the template enantiomer.  相似文献   

10.
Pandoli O  Massi A  Cavazzini A  Spada GP  Cui D 《The Analyst》2011,136(18):3713-3719
Herein we report the chemical reduction of silver ions incorporated into chiral supramolecular nanostructures by NaBH(4) in buffered (basic) and unbuffered conditions. In situ self-assembly of guanosine 5'-monophosphate (5'-GMP) templated by Ag(I) and generation of silver nanoparticles (NPs) were continuously monitored by CD and UV-Vis spectroscopy measurements. 5'-GMP has been identified as an efficient chiral organic ligand to complex silver ions into a hierarchical helical nanostructure and is a useful capping agent for stabilizing silver NPs with a size diameter lower than 20 nm. The observation of opposite signed bands in the CD spectra of Ag(I)/5'-GMP complexes at different pH has suggested the existence of opposite-handed supramolecular helical structures depending on pH. Both helical supramolecular structures induce chirality in the silver NPs during their growth of the same handedness as shown by the CD signals in the plasmon resonance band.  相似文献   

11.
Helical rosette nanotubes (RNTs) are obtained through the self-assembly of the GwedgeC motif, a self-complementary DNA base analogue featuring the complementary hydrogen bonding arrays of both guanine and cytosine. The first step of this process is the formation of a 6-membered supermacrocycle (rosette) maintained by 18 hydrogen bonds, which then self-organizes into a helical stack defining a supramolecular sextuple helix whose chirality and three-dimensional organization arise from the chirality, chemical structure, and conformational organization of the GwedgeC motif. Because a chiral GwedgeC motif is predisposed to express itself asymmetrically upon self-assembly, there is a natural tendency for it to form one chiral RNT over its mirror image. Here we describe the synthesis and characterization of a chiral GwedgeC motif that self-assembles into helical RNTs in methanol, but undergoes mirror image supramolecular chirality inversion upon the addition of very small amounts of water (<1% v/v). Extensive physical and computational studies established that the mirror-image RNTs obtained, referred to as chiromers, result from thermodynamic (in water) and kinetic (in methanol) self-assembly processes involving two conformational isomers of the parent GwedgeC motif. Although derived from conformational states, the chiromers are thermodynamically stable supramolecular species, they display dominant/recessive behavior, they memorize and amplify their chirality in an achiral environment, they change their chirality in response to solvent and temperature, and they catalytically transfer their chirality. On the basis of these studies, a detailed mechanism for supramolecular chirality inversion triggered by specific molecular interactions between water molecules and the GwedgeC motif is proposed.  相似文献   

12.
Guha S  Drew MG  Banerjee A 《Organic letters》2007,9(7):1347-1350
[structure: see text]. A series of water-soluble synthetic dipeptides (1-3) with an N-terminally located beta-alanine residue, beta-alanyl-l-valine (1), beta-alanyl-l-isoleucine (2), and beta-alanyl-l-phenylalanine (3), form hydrogen-bonded supramolecular double helices with a pitch length of 1 nm, whereas the C-terminally positioned beta-alanine containing dipeptide (4), l-phenylalanyl-beta-alanine, does not form a supramolecular double helical structure. beta-Ala-Xaa (Xaa = Val/Ile/Phe) can be regarded as a new motif for the formation of supramolecular double helical structures in the solid state.  相似文献   

13.
The synthesis of dendritic dipeptides (4-3,4-3,5-4)12G2-CH(2)-Boc-L-Tyr-L-Ala-OMe and (4-3, 4-3,5-4)12G2-CH(2)-Boc-D-Tyr-D-Ala-OMe is described. These dendritic dipeptides self-assemble into porous elliptical and circular columns that in turn self-organize into centered rectangular columnar and hexagonal columnar periodic arrays. The transition from porous elliptical to porous circular columns is mediated in a reversible or irreversible way by the thermal history of the sample. A method to determine the dimensions of hollow elliptical and circular columns by the reconstruction of the small-angle powder X-ray diffractograms of the centered rectangular or hexagonal columnar lattices was elaborated. This technique together with wide-angle X-ray experiments performed on aligned fibers provided access to the structural and retrostructural analysis of elliptical supramolecular pores. This procedure is general and can be adapted for the determination of the dimensions of pores of any columnar shape.  相似文献   

14.
Helix structures at atomic/molecular level have not been found in self-assembled peptide seque nce with less than three residues.As β-sheet supramolecular secondary structures have been discovered in solidstate amino acids,we here report the conjugation of simple N-terminal aryl protecting group could give rise to helical supramolecular secondary structures in solid-state,which determines the optical activities of the adjacent aryl groups.The carboxylic acid-involved asymmetric H-bonds in N-te rminal aryl amino acids induce the emergence of super-helical structures of amino acid residues and aryl groups.In most cases,supramolecular tilted chirality of aryl groups is opposite to that of amino acid sequences,of which handedness and helical pitch are determined by the H-bond modalities.Determining correlation between supramolecular tilted chirality of aryl segments and their chiroptical activities is firstly unveiled,which was verified by the computational results based on density functional theory.Most aryl amino acids self-assembled by nanoprecipitation method via crystallization induced self-assembly into rigid one-dimensional microstructures with ultra-high Young's modulus.This study reveals the generic existence of chiral supramolecular structure s in aggregated amino acid derivatives and gives an in-depth investigation into the structural-property relationships,which could guide the rational design and screening of chiroptical supramolecular materials.  相似文献   

15.
The design of supramolecular motifs with tuneable stability and adjustable supramolecular polymerisation mechanisms is of crucial importance to precisely control the properties of supramolecular assemblies. This report focuses on constructing π-conjugated oligo(phenylene ethynylene) (OPE)-based one-dimensional helical supramolecular polymers that show a cooperative growth mechanism. Thus, a novel set of discotic molecules comprising a rigid OPE core, three amide groups, and peripheral solubilising wedge groups featuring C(3) and C(2) core symmetry was designed and synthesised. All of the discotic molecules are crystalline compounds and lack a columnar mesophase in the solid state. In dilute methylcyclohexane solution, one-dimensional supramolecular polymers are formed stabilised by threefold intermolecular hydrogen bonding and π-π interactions, as evidenced by (1) H?NMR measurements. Small-angle X-ray and light scattering measurements reveal significant size differences between the columnar aggregates of C(3) - and C(2) -symmetrical discotics, that is, the core symmetry strongly influences the nature of the supramolecular polymerisation process. Temperature-dependent CD measurements show a highly cooperative polymerisation process for the C(3) -symmetrical discotics. In contrast, the self-assembly of C(2) -symmetrical discotics shows a smaller enthalpy release upon aggregation and decreased cooperativity. In all cases, the peripheral stereogenic centres induce a preferred handedness in the columnar helical aggregates. Moreover, one stereogenic centre suffices to fully bias the helicity in the C(2) -symmetrical discotics. Finally, chiral amplification studies with the C(3) -symmetrical discotics were performed by mixing chiral and achiral discotics (sergeants-and-soldiers experiment) and discotics of opposite chirality (majority-rules experiment). The results demonstrate a very strong sergeants-and-soldiers effect and a rather weak majority-rules effect.  相似文献   

16.
Left-right asymmetry is ubiquitous in nature. Recent studies reveal changes in the energy and growth rate of crystal surfaces to which D or L amino acids bind, with the binding itself being dictated by stereochemical matching. Likewise, oligomerization of amino acids appears to be a chiroselective process that enables the propagation of sequences with defined handedness.[[For a definition of chiroselective self-assembly, see: M. Bolli, R. Micura, A. Eschenmoser, Chem. Biol. 1997, 4, 309-320.]] These results, along with related findings on symmetry breaking and further amplification of asymmetry at a supramolecular level, constitute new insights into the origin of homochirality in living species.  相似文献   

17.
We synthesised a library of cis- and trans-cyclic dipeptides and evaluated their efficacy as catalysts in the asymmetric Weitz-Scheffer epoxidation of trans-chalcone. A thorough investigation relying on structure-activity studies and computational studies provided insights into the mechanism of the process. Our results revealed some structural features required for efficient conversion and for introduction of chirality into the product. The cyclic dipeptide acts as a catalyst by templating a supramolecular arrangement at the aqueous-organic interface required for efficient transformations to occur. Among all cyclic dipeptides investigated, cyclo(Leu-Leu) was the most efficient supramolecular catalyst.  相似文献   

18.
The optical activity of helical homopolymers devoid of chiral centers increases drastically when a small amount of homochiral monomers is incorporated into them. We study this so-called sergeants-and-soldiers effect of chirality amplification in solutions of helical supramolecular polymers with a theoretical model that bears a strong resemblance to a one-dimensional, two-component Ising model. In the limit of very long self-assembled helical polymers, the strength of the sergeants-and-soldiers effect depends strongly on the free energy of a helix reversal and less so on the concentration of aggregating material. Outside the long-chain limit, we find the reverse--that is, a strong concentration dependence and a weak dependence on the helix-reversal energy. Our treatment gives an excellent agreement with recently published circular-dichroism measurements on mixed aggregates of discotic molecules in the solvents water and n-butanol, at two different overall concentrations.  相似文献   

19.
Here, we report the mechanisms of chiral transfer at various length scales in the self-assembly of enantiomeric chiral block copolymers (BCPs*). We show the evolution of homochirality from molecular chirality into phase chirality in the self-assembly of the BCPs*. The chirality of the molecule in the BCP* is identified from circular dichroism (CD) spectra, while the handedness of the helical conformation in the BCP* is determined from a split-type Cotton effect in vibrational circular dichroism spectra. Microphase separation of the BCP* is exploited to form a helical (H*) phase, and the handedness of helical nanostructure in the BCP* is directly visualized from transmission electron microscopy tomography. As examined by CD and fluorescence experiments, significant induced CD signals and a bathochromic shift of fluorescence emission for the achiral perylene moiety as a chemical junction of the BCPs* can be found while the concentration of the BCPs* in toluene solution is higher than the critical micelle concentration, suggesting a twisting and shifting mechanism initiating from the microphase-separated interface of the BCPs* leading to formation of the H* phase from self-assembly.  相似文献   

20.
The H-bond mediated self-assembly of the chiral C2-symmetric bis-(2-amino-4-chloro-pyrimidines) 3 and 4 allows for the molecular recognition directed generation of helical superstructures. In the former case, unoccupied channel structures defined by the cylindrical interior of the derived supramolecular helix result, as revealed by X-ray crystallographic analysis using a synchrotron source. Upon crystallization, racemic 3 spontaneously resolves to form homochiral crystals exhibiting a helical packing motif identical to that determined for optically pure 3. The data provide insight into the interplay of the different structural and interactional features of the molecular components to the generation of the channel structure and suggest design strategies toward porous organic molecular solids of variable size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号