首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We describe a procedure for determining a few of the largest singular values of a large sparse matrix. The method by Golub and Kent which uses the method of modified moments for estimating the eigenvalues of operators used in iterative methods for the solution of linear systems of equations is appropriately modified in order to generate a sequence of bidiagonal matrices whose singular values approximate those of the original sparse matrix. A simple Lanczos recursion is proposed for determining the corresponding left and right singular vectors. The potential asynchronous computation of the bidiagonal matrices using modified moments with the iterations of an adapted Chebyshev semi-iterative (CSI) method is an attractive feature for parallel computers. Comparisons in efficiency and accuracy with an appropriate Lanczos algorithm (with selective re-orthogonalization) are presented on large sparse (rectangular) matrices arising from applications such as information retrieval and seismic reflection tomography. This procedure is essentially motivated by the theory of moments and Gauss quadrature.This author's work was supported by the National Science Foundation under grants NSF CCR-8717492 and CCR-910000N (NCSA), the U.S. Department of Energy under grant DOE DE-FG02-85ER25001, and the Air Force Office of Scientific Research under grant AFOSR-90-0044 while at the University of Illinois at Urbana-Champaign Center for Supercomputing Research and Development.This author's work was supported by the U.S. Army Research Office under grant DAAL03-90-G-0105, and the National Science Foundation under grant NSF DCR-8412314.  相似文献   

2.
Adaptive polynomial preconditioning for hermitian indefinite linear systems   总被引:1,自引:0,他引:1  
This paper explores the use of polynomial preconditioned CG methods for hermitian indefinite linear systems,Ax=b. Polynomial preconditioning is attractive for several reasons. First, it is well-suited to vector and/or parallel architectures. It is also easy to employ, requiring only matrix-vector multiplication and vector addition. To obtain an optimum polynomial preconditioner we solve a minimax approximation problem. The preconditioning polynomial,C(), is optimum in that it minimizes a bound on the condition number of the preconditioned matrix,C(A)A. We also characterize the behavior of this minimax polynomial, which makes possible a thorough understanding of the associated CG methods. This characterization is also essential to the development of an adaptive procedure for dynamically determining the optimum polynomial preconditioner. Finally, we demonstrate the effectiveness of polynomial preconditioning in a variety of numerical experiments on a Cray X-MP/48. Our results suggest that high degree (20–50) polynomials are usually best.This research was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Dept. of Energy, by Lawrence Livermore National Laboratory under contract W-7405-ENG-48.This research was supported in part by the Dept. of Energy and the National Science Foundation under grant DMS 8704169.This research was supported in part by U.S. Dept. of Energy grant DEFG02-87ER25026 and by National Science Foundation grant DMS 8703226.  相似文献   

3.
Two classes of incomplete factorization preconditioners are considered for nonsymmetric linear systems arising from second order finite difference discretizations of non-self-adjoint elliptic partial differential equations. Analytic and experimental results show that relaxed incomplete factorization methods exhibit numerical instabilities of the type observed with other incomplete factorizations, and the effects of instability are characterized in terms of the relaxation parameter. Several stabilized incomplete factorizations are introduced that are designed to avoid numerically unstable computations. In experiments with two-dimensional problems with variable coefficients and on nonuniform meshes, the stabilized methods are shown to be much more robust than standard incomplete factorizations.The work presented in this paper was supported by the National Science Foundation under grants DMS-8607478, CCR-8818340, and ASC-8958544, and by the U.S. Army Research Office under grant DAAL-0389-K-0016.  相似文献   

4.
In recent years, domain decomposition methods have attracted much attention due to their successful application to many elliptic and parabolic problems. Domain decomposition methods treat problems based on a domain substructuring, which is attractive for parallel computation, due to the independence among the subdomains. In principle, domain decomposition methods may be applied to the system resulting from a standard discretization of the parabolic problems or, directly, be carried out through a discretization of parabolic problems. In this paper, a direct domain decomposition method is introduced to discretize the parabolic problems. The stability and convergence of this algorithm are analyzed. This work was supported in part by Polish Sciences Foundation under grant 2P03A00524. This work was supported in part by the US Department of Energy under Contracts DE-FG02-92ER25127 and by the Director, Office of Science, Advanced Scientific Computing Research, U.S. Department of Energy under contract DE-AC02-05CH11231.  相似文献   

5.
Summary The standard perturbation theory for linear equations states that nearly uncoupled Markov chains (NUMCs) are very sensitive to small changes in the elements. Indeed, some algorithms, such as standard Gaussian elimination, will obtain poor results for such problems. A structured perturbation theory is given that shows that NUMCs usually lead to well conditioned problems. It is shown that with appropriate stopping, criteria, iterative aggregation/disaggregation algorithms will achieve these structured error bounds. A variant of Gaussian elimination due to Grassman, Taksar and Heyman was recently shown by O'Cinneide to achieve such bounds.Supported by the National Science Foundation under grant CCR-9000526 and its renewal, grant CCR-9201692. This research was done in part, during the author's visit to the Institute for Mathematics and its Applications, 514 Vincent Hall, 206 Church St. S.E., University of Minnesota, Minneapolis, MN 55455, USA  相似文献   

6.
Optimal and superoptimal approximations of a complex square matrix by polynomials in a normal basis matrix are considered. If the unitary transform associated with the eigenvectors of the basis matrix is computable using a fast algorithm, the approximations may be utilized for constructing preconditioners. Theorems describing how the parameters of the approximations could be efficiently computed are given, and for special cases earlier results by other authors are recovered. Also, optimal and superoptimal approximations for block matrices are determined, and the same type of theorems as for the point case are proved. This research was supported by the Swedish National Board for Industrial and Technical Development (NUTEK) and by the U.S. National Science Foundation under grant ASC-8958544.  相似文献   

7.
The solution of systems of equations arising from systems of time-dependent partial differential equations (PDEs) is considered. Primarily, first-order PDEs are studied, but second-order derivatives are also accounted for. The discretization is performed using a general finite difference stencil in space and an implicit method in time. The systems of equations are solved by a preconditioned Krylov subspace method. The preconditioners exploit optimal and superoptimal approximations by low-degree polynomials in a normal basis matrix, associated with a fast trigonometric transform. Numerical experiments for high-order accurate discretizations are presented. The results show that preconditioners based on fast transforms yield efficient solution algorithms, even for large quotients between the time and space steps. Utilizing a spatial grid ratio less than one, the arithmetic work per grid point is bounded by a constant as the number of grid points increases. This research was supported by the Swedish National Board for Industrial and Technical Development (NUTEK) and by the U.S. National Science Foundation under grant ASC-8958544.  相似文献   

8.
Newton's method for a class of nonsmooth functions   总被引:1,自引:0,他引:1  
This paper presents and justifies a Newton iterative process for finding zeros of functions admitting a certain type of approximation. This class includes smooth functions as well as nonsmooth reformulations of variational inequalities. We prove for this method an analogue of the fundamental local convergence theorem of Kantorovich including optimal error bounds.The research reported here was sponsored by the National Science Foundation under Grants CCR-8801489 and CCR-9109345, by the Air Force Systems Command, USAF, under Grants AFOSR-88-0090 and F49620-93-1-0068, by the U. S. Army Research Office under Grant No. DAAL03-92-G-0408, and by the U. S. Army Space and Strategic Defense Command under Contract No. DASG60-91-C-0144. The U. S. Government has certain rights in this material, and is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.  相似文献   

9.
We present the results of numerical experiments aimed at comparing two recently proposed sparse approximate inverse preconditioners from the point of view of robustness, cost, and effectiveness. Results for a standard ILU preconditioner are also included. The numerical experiments were carried out on a Cray C98 vector processor. This work was partially supported by the GA AS CR under grant 2030706 and by the grant GA CR 205/96/0921.  相似文献   

10.
Summary Various iterative methods for solving the linear systems associated with finite element approximations to self-adjoint elliptic differential operators are compared based on their performance on serial and parallel machines. The methods studied are all preconditioned conjugate gradient methods, differing only in the choice of preconditioner. The preconditioners considered arise from diagonal scaling, incomplete Cholesky decomposition, hierarchical basis functions, and a Neumann-Dirichlet domain decomposition technique. The hierarchical basis function idea is shown to be especially effective on both serial and parallel architectures.This work was supported by the Applied Mathematical Sciences Program of the US Department of Energy under contract DE-AC02-76ER03077  相似文献   

11.
Complementarity and nondegeneracy in semidefinite programming   总被引:4,自引:0,他引:4  
Primal and dual nondegeneracy conditions are defined for semidefinite programming. Given the existence of primal and dual solutions, it is shown that primal nondegeneracy implies a unique dual solution and that dual nondegeneracy implies a unique primal solution. The converses hold if strict complementarity is assumed. Primal and dual nondegeneracy assumptions do not imply strict complementarity, as they do in LP. The primal and dual nondegeneracy assumptions imply a range of possible ranks for primal and dual solutionsX andZ. This is in contrast with LP where nondegeneracy assumptions exactly determine the number of variables which are zero. It is shown that primal and dual nondegeneracy and strict complementarity all hold generically. Numerical experiments suggest probability distributions for the ranks ofX andZ which are consistent with the nondegeneracy conditions. Supported in part by the U.S. National Science Foundation grant CCR-9625955. Supported in part by U.S. National Science Foundation grant CCR-9501941 and the U.S. Office of Naval Research grant N00014-96-1-0704. Supported in part by U.S. National Science Foundation grant CCR-9401119.  相似文献   

12.
In this paper we propose a method for optimizing convex performance functions in stochastic systems. These functions can include expected performance in static systems and steady-state performance in discrete-event dynamic systems; they may be nonsmooth. The method is closely related to retrospective simulation optimization; it appears to overcome some limitations of stochastic approximation, which is often applied to such problems. We explain the method and give computational results for two classes of problems: tandem production lines with up to 50 machines, and stochastic PERT (Program Evaluation and Review Technique) problems with up to 70 nodes and 110 arcs. Sponsored by the National Science Foundation under grant number CCR-9109345, by the Air Force Systems Command, USAF, under grant numbers F49620-93-1-0068 and F49620-95-1-0222, by the U.S. Army Research Office under grant number DAAL03-92-G-0408, and by the U.S. Army Space and Strategic Defense Command under contract number DASG60-91-C-0144. The U.S. Government has certain rights in this material, and is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. Sponsored by a Wisconsin/Hilldale Research Award, by the U.S. Army Space and Strategic Defense Command under contract number DASG60-91-C-0144, and the Air Force Systems Command, USAF, under grant number F49620-93-1-0068. Sponsored by the National Science Foundation under grant number DDM-9201813.  相似文献   

13.
A Dual-Primal FETI method for incompressible Stokes equations   总被引:1,自引:0,他引:1  
In this paper, a dual-primal FETI method is developed for incompressible Stokes equations approximated by mixed finite elements with discontinuous pressures. The domain of the problem is decomposed into nonoverlapping subdomains, and the continuity of the velocity across the subdomain interface is enforced by introducing Lagrange multipliers. By a Schur complement procedure, the solution of an indefinite Stokes problem is reduced to solving a symmetric positive definite problem for the dual variables, i.e., the Lagrange multipliers. This dual problem is solved by the conjugate gradient method with a Dirichlet preconditioner. In each iteration step, both subdomain problems and a coarse level problem are solved by a direct method. It is proved that the condition number of this preconditioned dual problem is independent of the number of subdomains and bounded from above by the square of the product of the inverse of the inf-sup constant of the discrete problem and the logarithm of the number of unknowns in the individual subdomains. Numerical experiments demonstrate the scalability of this new method. This work is based on a doctoral dissertation completed at Courant Institute of Mathematical Sciences, New York University. This work was supported in part by the National Science Foundation under Grants NSF-CCR-9732208, and in part by the U.S. Department of Energy under contract DE-FG02-92ER25127.  相似文献   

14.
We derive compact representations of BFGS and symmetric rank-one matrices for optimization. These representations allow us to efficiently implement limited memory methods for large constrained optimization problems. In particular, we discuss how to compute projections of limited memory matrices onto subspaces. We also present a compact representation of the matrices generated by Broyden's update for solving systems of nonlinear equations.These authors were supported by the Air Force Office of Scientific Research under Grant AFOSR-90-0109, the Army Research Office under Grant DAAL03-91-0151 and the National Science Foundation under Grants CCR-8920519 and CCR-9101795.This author was supported by the U.S. Department of Energy, under Grant DE-FG02-87ER25047-A001, and by National Science Foundation Grants CCR-9101359 and ASC-9213149.  相似文献   

15.
Recently, various interior point algorithms related to the Karmarkar algorithm have been developed for linear programming. In this paper, we first show how this interior point philosophy can be adapted to the linear 1 problem (in which there are no feasibility constraints) to yield a globally and linearly convergent algorithm. We then show that the linear algorithm can be modified to provide aglobally and ultimatelyquadratically convergent algorithm. This modified algorithm appears to be significantly more efficient in practise than a more straightforward interior point approach via a linear programming formulation: we present numerical results to support this claim.This paper was presented at the Third SIAM Conference on Optimization, in Boston, April 1989.Research partially supported by the Applied Mathematical Sciences Research Program (KC-04-02) of the Office of Energy Research of the U.S. Department of Energy under grant DE-FG02-86ER25013.A000, by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell University, and by the Computational Mathematics Program of the National Science Foundation under grant DMS-8706133.Research partially supported by the U.S. Army Research Office through the Mathematical Sciences Institute, Cornell University and by the Computational Mathematics Program of the National Science Foundation under grant DMS-8706133.  相似文献   

16.
Two algorithms for reordering sparse, symmetric matrices or undirected graphs to reduce envelope and wavefront are considered. The first is a combinatorial algorithm introduced by Sloan and further developed by Duff, Reid, and Scott; we describe enhancements to the Sloan algorithm that improve its quality and reduce its run time. Our test problems fall into two classes with differing asymptotic behavior of their envelope parameters as a function of the weights in the Sloan algorithm. We describe an efficientO(nlogn+m) time implementation of the Sloan algorithm, wheren is the number of rows (vertices), andm is the number of nonzeros (edges). On a collection of test problems, the improved Sloan algorithm required, on the average, only twice the time required by the simpler RCM algorithm while improving the mean square wavefront by a factor of three. The second algorithm is a hybrid that combines a spectral algorithm for envelope and wavefront reduction with a refinement step that uses a modified Sloan algorithm. The hybrid algorithm reduces the envelope size and mean square wavefront obtained from the Sloan algorithm at the cost of greater running times. We illustrate how these reductions translate into tangible benefits for frontal Cholesky factorization and incomplete factorization preconditioning. This work was partially supported by the U. S. National Science Foundation grants CCR-9412698, DMS-9505110, and ECS-9527169, by U. S. Department of Energy grant DE-FG05-94ER25216, and by the National Aeronautics and Space Administration under NASA Contract NAS1-19480 while the second author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA.  相似文献   

17.
We study spectral properties of a class of block 2 × 2 matrices that arise in the solution of saddle point problems. These matrices are obtained by a sign change in the second block equation of the symmetric saddle point linear system. We give conditions for having a (positive) real spectrum and for ensuring diagonalizability of the matrix. In particular, we show that these properties hold for the discrete Stokes operator, and we discuss the implications of our characterization for augmented Lagrangian formulations, for Krylov subspace solvers and for certain types of preconditioners. The work of this author was supported in part by the National Science Foundation grant DMS-0207599 Revision dated 5 December 2005.  相似文献   

18.
On the convergence of Newton iterations to non-stationary points   总被引:1,自引:0,他引:1  
We study conditions under which line search Newton methods for nonlinear systems of equations and optimization fail due to the presence of singular non-stationary points. These points are not solutions of the problem and are characterized by the fact that Jacobian or Hessian matrices are singular. It is shown that, for systems of nonlinear equations, the interaction between the Newton direction and the merit function can prevent the iterates from escaping such non-stationary points. The unconstrained minimization problem is also studied, and conditions under which false convergence cannot occur are presented. Several examples illustrating failure of Newton iterations for constrained optimization are also presented. The paper also shows that a class of line search feasible interior methods cannot exhibit convergence to non-stationary points. This author was supported by Air Force Office of Scientific Research grant F49620-00-1-0162, Army Research Office Grant DAAG55-98-1-0176, and National Science Foundation grant INT-9726199.This author was supported by Department of Energy grant DE-FG02-87ER25047-A004.This author was supported by National Science Foundation grant CCR-9987818 and Department of Energy grant DE-FG02-87ER25047-A004.  相似文献   

19.
Modifying complex plane rotations, we derive a new Jacobi-type algorithm for the Hermitian eigendecomposition, which uses only real arithmetic. When the fast-scaled rotations are incorporated, the new algorithm brings a substantial reduction in computational costs. The new method has the same convergence properties and parallelism as the symmetric Jacobi algorithm. Computational test results show that it produces accurate eigenvalues and eigenvectors and achieves great reduction in computational time.The work of this author was supported in part by the National Science Foundation grant CCR-8813493 and by the University of Minnesota Army High Performance Computing Research Center contract DAAL 03-89-C-0038.The work of this author was supported in part by the University of Minnesota Army High Performance Computing Research Center contract DAAL 03-89-C-0038.  相似文献   

20.
Implementation of a continuation method for normal maps   总被引:2,自引:0,他引:2  
This paper presents an implementation of a nonsmooth continuation method of which the idea was originally put forward by Alexander et al. We show how the method can be computationally implemented and present numerical results for variational inequality problems in up to 96 variables. The research reported here was sponsored by the Air Force Office of Scientific Research, Air Force Materiel Command, USAF, under grant numbers F49620-93-1-0068 and F49620-95-1-0222, by the U.S. Army Research Office under grant number DAAH04-95-1-0149, and by the National Science Foundation under grant number CCR-9109345. The U.S. Government has certain rights in this material, and is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the sponsoring agencies or the U.S. Government.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号