首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
FT-IR and Raman spectra of five hydrated alkali borates and five hydrated alkali double borates have been recorded at room temperature in the range 400 to 4000 cm−1, and analyzed. Fundamental vibrational modes have been identified and assignments tentatively made in comparison with the work of Janda and Heller, and Li Jun. The text was submitted by the authors in English.  相似文献   

2.
Vanadium oxide thin films were prepared by spray pyrolysis using solutions of vanadium chloride (VCl3) with different concentrations on glass substrates heated at 200 and 250 °C. The influence of substrate temperature (Ts) and solution concentration (molarity) on structural and vibrational properties is discussed by using X-ray diffraction and Raman spectroscopy. The results revealed that at 0.05 M and Ts = 200 °C, V4O9 thin films are obtained. At 250 °C, V2O5 phases with preferential orientation are observed and the films become polycrystalline when the molarity increases.  相似文献   

3.
The interactions occurring in di-urea (NHC(O)NH) cross-linked poly(oxyethylene) (POE)/siloxane hybrids (di-ureasils) doped with zinc triflate (Zn(CF3SO3)2) were investigated by Fourier Transform infrared (FT-IR) and Raman (FT-Raman) spectroscopies. Bonding of the Zn2+ ions to the urea carbonyl oxygen atoms occurs in the entire range of compositions studied (∞ > n ≥ 1, where n, salt content, is the molar ratio of oxyethylene moieties per Zn2+ ion). At n > 20 the incorporation of the guest cations progressively reduces the number of free CO groups. At n = 20 the saturation of the urea cross-links is attained and the Zn2+ ions start to coordinate to the POE chains giving rise to the formation of a crystalline POE/Zn(CF3SO3)2 complex. The latter process occurs at the expense of the destruction of the hydrogen-bonded POE/urea structures of the host di-ureasil structure. New hydrogen-bonded associations, more ordered than the urea–urea aggregates present in the non-doped matrix and including Zn2+OC coordination, emerge in parallel. “Free” and weakly coordinated CF3SO3 ions, present in all the xerogels studied, appear to be the main charge carriers of the conductivity maximum of this family of ormolytes located at n = 60 at 30 °C. In materials with n ≤ 20 contact ion pairs, “cross-link separated” ions pairs and higher ionic aggregates appear. The data reported demonstrate that the behaviour of the di-ureasils doped with triflate salts depends on the type of cation.  相似文献   

4.
In this investigation two calcium bilirubinates compounds, Ca(HBR)2·H2O and Ca(BR)·2H2O, were prepared. Their Fourier transform infrared spectra were measured in KBr discs and in fluorolube and nujol mulls, respectively. The results suggest that it is better to identify the Ca(HBR)2·H2O and Ca(BR)·2H2O with fluorolube and/or nujol mulls when examining mixtures (e.g. gallstone).  相似文献   

5.
The dimeric bis(quaternaryammonium bromide) surfactants, [Br(CH3)2N+(C m H2 m +1)—(CH2) s —(C m H2 m +1)N+(CH3)2Br, s = 2, 3 and m = 4, 6, 10 and 12, s = 6 and m = 8, 10, 12], have been synthesized and the phase maps of the sm6-8-water, sm6-10-water and sm6-12-water binary systems have been determined (sm6-8 implies s = 6, m = 8). In order to examine the molecular structures of these solid samples and of their dimeric surfactant-water binary systems, Raman spectra of the simple dimeric surfactants, sm2-4 and sm3-4, in which crystal structures of the trans- and cis-type conformations have been determined by single-crystal X-ray diffraction analysis, have been investigated, and Raman bands characteristic of these skeletal structures were found in the skeletal deformation region. On the basis of these characteristic Raman bands for the two conformations, it has been concluded that the dimeric surfactants, sm6-8, sm6-10 and sm6-12 also take up a cis-type conformation in the crystalline state. Furthermore, it has been found that the Raman bands in the C—H stretching, skeletal stretching and CH2 scissoring regions are sensitive to phase structure. Received: 21 July 1998 Accepted in revised form: 9 November 1998  相似文献   

6.
The infrared and Raman spectra of the bis-chelated Zn(II) complexes of the amino acids glycine, alanine, valine, leucine, isoleucine and phenylalanine were recorded and analyzed in relation to its structural peculiarities. Some comparisons between the recorded spectra are also presented and the characteristics of the carboxylate motions as well as those of the metal-to-ligand vibrations are discussed in detail.  相似文献   

7.
The FT-Raman spectra of the first and second generations of phosphorus-containing dendrimers with terminal benzaldehyde and P–Cl groups have been recorded and analyzed. The structural optimization and normal mode analysis were performed for dendrimers on the basis of the density functional theory (DFT). The calculated geometrical parameters, harmonic vibrational frequencies and Raman scattering activities are predicted in a good agreement with the experimental data. The experimental Raman spectra of dendrimers were interpreted by means of potential energy distribution. Relying on DFT calculations the lines of the core, repeating units and terminal groups of dendrimers were assigned.The influence of the encirclement on the line frequencies and intensities was studied and due to the predictable, controlled and reproducible structure of dendrimers the information, usually inaccessible is obtained. The strong line at 1600 cm−1 show marked changes of intensity in dependence of aldehyde (CHO) or azomethyne (CHN) substituents in the aromatic ring. The polarizabilities and lipophilicity of the eleven generations of dendrimers were estimated based on the calculated values of the first generations.  相似文献   

8.
9.
Fourier transform infrared (FT-IR) spectra of phthalimide and N-bromophthalimide have been recorded in the range of 4000-400 cm-1. With the hope of providing more and effective information on the fundamental vibrations, a normal coordinate analysis has been performed on phthalimide and N-bromophthalimide, by assuming C2v symmetry. Density functional theory (DFT)-Beck3-Lee-Yang-Parr (B3LYP) levels with 6-31G* and 6-311+G** basis sets have been employed in quantum chemical analysis. The computational frequencies are in good agreement with the observed results. The theoretical spectra obtained along with intensity data agree well with the observed spectra.  相似文献   

10.
Changes occurring in the FT-IR and Raman spectra of-CD when complexed to Mn(III), in a compound formulated as Mn2(OH)2CD, may be taken as indicating the formation of a complex in which-CD is acting simultaneously as a first and second sphere ligand.  相似文献   

11.
The infrared spectra of meso-2,4-pentanediol and racemic-2,4-pentanediol were measured in an argon matrix at 20 K. The Raman spectra of the pure liquids (meso and racemic) were measured at room temperature. The spectra were obtained using a Fourier transform spectrophotometer and a cryostat for the low temperature matrix. The meso and racemic forms of the diol were separated by means of a spinning band distillation column. The energies of nine possible conformers of the meso form and nine conformers of the racemic form were calculated. Extensive ab initio calculations using B3LYP, MP2 and HF methods with several basis sets consistently gave the lowest energy for the TT conformer of the meso form and the GT (=TG) conformer of the racemic form. Ab initio calculations at the B3LYP/6-31G** level were performed for the lowest energy conformer of meso and racemic pentanediol to obtain the equilibrium geometry, vibrational frequencies, and infrared and Raman intensities. Calculated and experimental frequencies were compared to make vibrational assignments.  相似文献   

12.
The FT Raman spectra of the zero and first generations of phosphorus-containing dendrimers built from thiophosphoryl, cyclotriphosphazene and phthalocyanine core with terminal oxybenzaldehyde groups have been recorded and analyzed. The structural optimization and normal mode analysis were performed for dendrimers on the basis of the density functional theory (DFT). The calculated geometrical parameters, harmonic vibrational frequencies and Raman scattering activities are predicted in a good agreement with the experimental data. The experimental Raman spectra of dendrimers were interpreted by means of potential energy distribution. Relying on DFT calculations the lines of the cores, repeating units and terminal groups of dendrimers were assigned.The influence of the encirclement on the line frequencies and intensities was studied and due to the predictable, controlled and reproducible structure of dendrimers the information, usually inaccessible is obtained. The strong line at 1600 cm−1 show marked changes of intensity in dependence of aldehyde (CHO) or azomethyne (CHN) substituents in the aromatic ring. The polarizabilities and lipophilicity of dendrimers were estimated.  相似文献   

13.
The multi-technique analytical approach has proved to be a very effective tool for the analysis of artwork, as demonstrated by various studies. In this work, four micro-analysis methods were used to analyze the wall painting fragments in Kaiping Diaolou, a world cultural heritage enlisted in 2007. Field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray micro-analysis (EDX), combined with micro Raman and Fourier transform infrared (FT-IR) spectroscopy, provided a vast amount of information concerning the raw materials present in the pigments, organic binder, plasters and mortars of the wall painting. Four types of pigments (goethite, lazurite, chromium green and calcite) were identified on the surface layer of the wall paintings. The substrate under the pigment layer was found to be composed of cubic-like calcite (CaCO3), micro-rod bundle-shaped syngenite (K2Ca(SO4)2·H2O), gypsum (CaSO4·2H2O) and silica (SiO2). The organic binder can be attributed to animal glue (such as egg) and drying oil by micro FT-IR spectroscopy. These analysis results can provide important information for the conservation and restoration of the Kaiping Diaolou.  相似文献   

14.
Combined experimental and theoretical studies on molecular structure of the zero generation dendron, built from the hexafunctional cyclotriphosphazene core, with five OC6H4(CH2)2NHSO2C10H6N(CH3)2 terminal groups and one oxybenzaldehyde group G0 are reported. The Fourier transform Raman and IR spectra of G0 have been recorded. Conformations of low energy isomers of G0 have been studied at quantum-chemical level. The optimized geometry has been calculated by density functional (DFT) method at the PBE/TZ2P level of theory. The theoretical geometrical parameters, harmonic vibrational frequencies, IR intensities and Raman scattering activities are predicted in a good agreement with the experimental data. It was found that dendron molecule G0 has a concave lens structure with planar OC6H4CHO fragments and slightly non-planar cyclotriphosphazene core. Relying on DFT calculations the bands of the core and terminal groups were assigned. The frequencies of ν(NH) bands in the IR spectrum reveal the presence of the H-bonds in the dendron.  相似文献   

15.
Infrared spectra (4000–50 cm−1) of the vapor, amorphous and crystalline solids and Raman spectra (3600–10 cm−1) of the liquid with qualitative depolarization data as well as the amorphous and crystalline solids of methylaminothiophosphoryl difluoride, CH3N(H)P(=S)F2, and three deuterated species, CD3N(H)P(=S)F2, CH3N(D)P(=S)F2, and CD3N(D)P(=S)F2, have been recorded. The spectra indicate that in the vapor, liquid and amorphous solid a small amount of a second conformer is present, whereas only one conformer remains in the low temperature crystalline phase. The near-infrared spectra of the vapor confirms the existence of two conformers in the gas phase. Asymmetric top contour simulation of the vapor shows that the trans conformer is the predominant vapor phase conformer. From a temperature study of the Raman spectrum of the liquid the enthalpy difference between the trans and near-cis conformers was determined to be 368±15 cm−1 (4.41±0.2 kJ/mol), with the trans conformer being thermodynamically preferred. Ab Initio calculations with structure optimization using the 6-31G(d) and 6-311+G(d,p) basis sets at the restricted Hartree–Fock (RHF) and/or with full electron correlation by the perturbation method to second order (MP2) support the occurrence of near-trans (5° from trans) and near-cis (20° from cis) conformers. From the RHF/6-31G(d) calculation the near-trans conformer is predicted to be the more stable form by 451 cm−1 (5.35 kJ/mol) and from the MP2/6-311+G(d,p) calculation by 387 cm−1 (4.63 kJ/mol). All of the normal modes of the near-trans rotamer have been assigned based on infrared band contours, depolarization values and group frequencies and the assignment is supported by the normal coordinate calculation utilizing harmonic force constants from the MP2/6-31G(d) ab initio calculations.  相似文献   

16.
The Fourier transform Raman and Fourier transform infrared spectra of 5-bromo-2-nitropyridine were recorded in the solid phase. The equilibrium geometry, natural atomic charges, harmonic vibrational frequencies, infrared intensities and Raman scattering activities were calculated by density functional B3LYP method with the 6-311++G(d,p) basis set. The scaled theoretical wavenumbers showed very good agreement with the experimental values. A detailed interpretations of the infrared and Raman spectra of 5-bromo-2-nitropyridine is reported on the basis of the calculated potential energy distribution (PED). The theoretical spectrograms for the Raman and IR spectra of the title molecule have been constructed.  相似文献   

17.
The crystal structure of bis(1-methylisonicotinate)hydrogen perchlorate, (MIN)2H·ClO4, has been studied by X-ray diffraction, DFT calculations, FT-IR, Raman, 1H and 13C NMR spectra. The crystals are monoclinic, space group P21/n, with a pair of MIN molecules bridged by a short asymmetrical O·H·O hydrogen bond of 2.461(5) Å. The COO groups are twisted by 80.55° with respect to the plane of the pyridine ring. The anion interacts electrostatically with the positively charged nitrogen atoms of the neighbouring MIN molecules. The most stable conformer of isolated (MIN)2H·ClO4 and two homoconjugated cations, (MIN)2H, have been analyzed by the B3LYP/6-31G(d,p) calculations in order to determine the influence of the anion on the hydrogen bonds in MIN·H·MIN unit. The FT-IR spectrum of the (MIN)2H·ClO4 shows a broad and intense absorption in the 1500–400 cm−1 region, typical of short hydrogen bonds. The isotopic ratio, νOHO/νODO, is close to unity, indicating that the hydrogen bond is acentric (pseudo-type A).  相似文献   

18.
Phthalate acid esters (PAEs) possess endocrine disruptive effects and can produce reproductive and developmental toxicities. In this paper, both experimental and theoretical studies on FT-IR, Raman and 1H NMR spectra of diethyl phthalate (DEP) have been carried out. The geometrical structure of DEP was optimized at the HF/6-31G*, HF/6-311G**, B3LYP/6-31G*, and B3LYP/6-311G** levels, respectively. The harmonic vibrational frequencies, IR intensity, Raman activity and 1H NMR chemical shifts have been computed at the B3LYP/6-31G* and B3LYP/6-311G** levels. Anharmonic corrections to frequencies were obtained by means of second-order perturbation theory (PT2) at the B3LYP/6-31G* level. Based on potential energy distribution (PED), the vibrational assignments have also been performed. The theoretical calculation values were compared with the experimental observations and the results indicate they are in excellent agreement.  相似文献   

19.
FT-IR and FT-Raman spectra of the biomolecule 5-aminouracil were recorded in the regions 400–4000 cm−1 and 10–3500 cm−1, respectively. The observed vibrational wavenumbers were analyzed and assigned to different normal modes of vibration of the molecule. Density functional calculations were performed to support wavenumber assignments of the observed bands. A comparison with the molecule of uracil was made, and specific scale factors were employed in the predicted wavenumbers of 5-aminouracil. With the purpose of study the important molecule 5-aminouracil, its equilibrium geometry and harmonic wavenumbers were calculated for the first time by the B3LYP DFT method. The vibrational wavenumbers were compared with IR and Raman experimental data. Also good reproduction of the experimental wavenumbers is obtained and the % error is very small. All the tautomeric forms of 5-aminouracil were determined and optimized. The dimer forms were also simulated. The energy, atomic charges and dipole moments were discussed and several general conclusions were underlined.  相似文献   

20.
Summary: Temperature rising elution fractionation (TREF) has become a popular analytical technique that is able to determine the chemical composition distribution (CCD) of an ethylene/α-olefin copolymer. An infrared (IR) detector is commonly used in TREF detection to measure the concentration of the polymer solution exiting the column as a function of elution temperature. The chemical composition of the eluting polymer at a given elution temperature can be predicted from the relationship between comonomer content and TREF elution temperature pre-established through 13C nuclear magnetic resonance (NMR) analysis of TREF fractions. In this article, a Fourier transform infrared (FT-IR) spectrometer has been coupled with a TREF instrument to provide a more powerful tool for characterizing complex olefin copolymers. The Partial Least Squares (PLS) technique is used when analyzing the FT-IR spectra of the eluting polymer solutions. The power of on-line FT-IR detection in TREF is demonstrated using a few complex copolymer systems, such as ethylene-octene copolymer, polystyrene grafted ethylene-vinyl acetate copolymer and ethylene-methyl acrylate copolymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号