首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The development of rapid, efficient, and reliable detection methods for the characterization of energetic compounds is of high importance to security forces concerned with terrorist threats. With a mass spectrometric approach, characteristic ions can be produced by attaching anions to analyte molecules in the negative ion mode of electrospray ionization mass spectrometry (ESI‐MS). Under optimized conditions, formed anionic adducts can be detected with higher sensitivities as compared with the deprotonated molecules. Fundamental aspects pertaining to the formation of anionic adducts of 1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocane (HMX), 1,3,5‐trinitro‐1,3,5‐triazinane (RDX), pentaerythritol tetranitrate (PETN), nitroglycerin (NG), and 1,3,5‐trinitroso‐1,3,5‐triazinane energetic (R‐salt) compounds using various anions have been systematically studied by ESI‐MS and ESI tandem mass spectrometry (collision‐induced dissociation) experiments. Bracketing method results show that the gas‐phase acidities of PETN, RDX, and HMX fall between those of HF and acetic acid. Moreover, PETN and RDX are each less acidic than HMX in the gas phase. Nitroglycerin was found to be the most acidic among the nitrogen‐rich explosives studied. The ensemble of bracketing results allows the construction of the following ranking of gas‐phase acidities: PETN (1530‐1458 kJ/mol) > RDX (approximately 1458 kJ/mol) > HMX (approximately 1433 kJ/mol) > nitroglycerin (1427‐1327.8 kJ/mol).  相似文献   

2.
Olivier Vigneau 《Talanta》2009,77(5):1609-1058
The introduction of chloroform into the nebulising gas of a LC/MS electrospray interface (ESI), in a perfectly controlled way, leads to the formation of intense adducts ([M+Cl]) when a mobile phase containing HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane or octogen) and RDX (1,3,5-trintro-1,3,5-triazacyclohexane or hexogen) is eluted. This LC/MS method allows the direct analysis of aqueous samples containing HMX and RDX at the pictogram level without a concentration step. The method is used to determine HMX and RDX concentrations in ground water samples from a military site.  相似文献   

3.
Synthesis of 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane and 1,3,5‐trinitro‐1,3,5‐triazacyclohexane by the Bachmann process leads to a mixture of both. The separation of 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane and 1,3,5‐trinitro‐1,3,5‐triazacyclohexane from their mixture is difficult because the sizes and physical properties of these homologous compounds are similar. For this purpose, seven molecularly imprinted polymers have been synthesized for each explosive, and a selective solid‐phase extraction procedure has been developed. A molecularly imprinted polymer, synthesized with 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane as the template, methacrylic acid as the monomer and trimethylolpropane trimethacrylate as the cross‐linking agent in a molar ratio of 1:8:8 showed the best separation capability. A packed cartridge containing this polymer can be reused for 23 solid‐phase extraction cycles without repacking, and the total separation capability toward 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane reached 6.81 mg per gram of polymer. 1,3,5‐Trinitro‐1,3,5‐triazacyclohexane was not detected in the separated 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane by high‐performance liquid chromatography and vice versa. This newly developed method had the advantages of high recovery (100%) and purity, environmental friendliness, and room temperature operability. This study showed that some molecularly imprinted polymers that cannot absorb target analytes well in the solvent in which the polymers were polymerized might have high‐binding capacity for the analytes and show imprinting effects in other solvents.  相似文献   

4.
The cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) were examined in field and microcosm soil samples to determine their patterns of degradation and environmental fates. A number of analytical techniques, including solid-phase microextraction with on-fiber derivatization, gas chromatography-mass spectrometry, gas chromatography with electron-capture detection, liquid chromatography-mass spectrometry, and micellar electrokinetic chromatography were required for the analyses. Two different classes of intermediates were detected, both of which lead ultimately to the formation of nitrous oxide (N2O) and carbon dioxide (CO2). The first class was identified as the nitroso derivatives formed by the sequential reduction of -NO2 functional groups. The second class of intermediates, which was favored at higher humidities and in the presence of anaerobic sludge amendments, consisted of ring cleavage products including bis-(hydroxymethyl)-nitramine and methylenedinitramine. Rye-grass (Lolium perenne) present in field samples was found to extract and accumulate HMX from soil without further degradation. In all cases (excepting the plant samples), the indigenous microbes or amended domestic anaerobic sludge consortia degraded the cyclic nitramine explosives eventually to produce N2O and CO2.  相似文献   

5.
Desorption electrospray ionization (DESI) is applied to the rapid, in-situ, direct qualitative and quantitative analysis of mixtures of explosives and drugs from a variety of fabrics, including cotton, silk, denim, polyester, rayon, spandex, leather and their blends. The compounds analyzed were explosives: trinitrohexahydro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN) and the drugs of abuse: heroin, cocaine, and methamphetamine. Limits of detection are in the picogram range. DESI analyses were performed without sample preparation and carried out in the presence of common interfering chemical matrices, such as insect repellant, urine, and topical lotions. Spatial and depth profiling was investigated to examine the depth of penetration and lateral resolution. DESI was also used to examine cotton transfer swabs used for travel security sample collection in the screening process. High throughput quantitative analysis of fabric surfaces for targeted analytes is also reported.  相似文献   

6.
Partial butylation of methyldichlorosilane followed by the hydrolysis of the product gave a complicated siloxane mixture, from which 1,3-dimethyl-1, 3-dibutyl-1, 3-dihydrosiloxane (I), 1,3,5-tri-methyl-1, 5-dibutyl-1, 3,5-trihydrotrisiloxane (II), and 1,3,5,7-tetra-methyl-1,7-dibutyl-1,3,5,7-tetrahydrotetrasiloxane(III) were isolated and structurally determined. Removal of unreacted methyldichlorosilane after coupling reaction caused better yield of disiloxane, retention of methyldichlorosilane caused abundant yield of polysiloxanes.  相似文献   

7.
适用于TATB,RDX,HMX含能材料的全原子力场的建立与验证   总被引:1,自引:0,他引:1  
报道一个适用于三种常见的含能材料分子三硝基三氨基苯(TATB),环三亚甲基三硝胺(RDX),环四亚甲基四硝胺(HMX)的全原子力场.力场采用广泛使用的力场函数形式,其中键参数通过拟合量子化学密度泛函计算的数据获得,电荷参数和范德华参数通过拟合相应的分子晶体的物理性质(密度和升华焓)优化得到.通过计算分子和分子晶体的性质显示该力场可以用来准确地预测分子结构、分子振动频率和分子晶体的晶胞参数、密度和升华焓.进一步的验证显示该力场可用来较为准确地预测分子晶体的状态方程和机械模量.  相似文献   

8.
文献曾报道, 1,3,5-三(3,3,3-三氟丙基)-1,3,5-三甲基环三硅氧烷(简称D^F~3)有两种立体异构体, 即顺式和反式。1,3,5,7-四(3,3,3-三氟丙基)-1,3,5,7-四硅氧烷(简称D^F~4)有四种异构体。但未报道其结构特点。本文试图进一步探讨D^F~3和D^F~4的立体异构体的结构和稳定性。  相似文献   

9.
Survey spectra of single-crystal HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine), and PETN (pentaerythritol tetranitrate) were acquired in the region from 10 to 80 cm(-1) using terahertz time-domain spectroscopy. The spectra were taken at temperatures ranging from 8.4 to 300 K. Generally, the spectra show multiple absorption peaks in the range 50-80 cm(-1), with PETN (110) showing strong absorption features at room temperature. RDX (210) is the most notable in the region 10-40 cm(-1), showing multiple spectral features, while HMX (010) shows a very broad absorption at 47.8 cm(-1) with a fwhm of 37.3 cm(-1). Future plans include polarization-dependent investigations for multiple crystallographic orientations over an increased spectral range and higher-level theoretical calculations.  相似文献   

10.
A sulfobutyl ether-beta-cyclodextrin-assisted electrokinetic chromatographic method was developed to rapidly resolve and detect the cyclic nitramine explosives 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and their related degradation intermediates in environmental samples. Development of the electrophoretic method required the measurement of the aqueous solubility of CL-20 which was determined to be 3.59 +/- 0.74 mg/l at 25 degrees C (95% confidence interval, n=3). The performance of the method was then compared to results obtained from existing high-performance liquid chromatography methods including US Environmental Protection Agency method 8330.  相似文献   

11.
Treatment of 1,3,5-trinitro-1,3,5-triazacyclohexane and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclo-octane with potassium hydroxide gives dipotassium salt of methylenedinitramine.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 1, 2005, pp. 130–132.Original Russian Text Copyright © 2005 by Il’yasov, Lobanova.  相似文献   

12.
Formation of Organosilicon Compounds. 79. NMR-Spectroscopical Investigation of 1,3,5-Trisilacyclohexanes and 1,3,5,7-Tetrasilaadamantanes For several groups of isomeric 1,3,5-trisilacyclohexanes and 1,3,5,7-tetrasilaadamantanes, structure assignment and conformation analysis of given by elucidation of their 1H-NMR spectra.  相似文献   

13.
《Vibrational Spectroscopy》2007,43(2):243-248
We have measured the terahertz absorption spectra of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), pentaerythritol tetranitrate (PETN), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), 2,4,6-trinitrotoluene (TNT), the plastic explosives Semtex H, SX2, and Metabel, and a number of confusion materials using terahertz pulsed transmission spectroscopy. Spectral fingerprints were obtained from 3 to 133 cm−1. The spectra of the plastic explosives are dominated by the spectral signatures of their explosive components due to low frequency vibrations and crystalline phonon modes. Importantly, the terahertz spectra of the confusion materials show no resemblance to the explosives spectra. The refractive indices obtained for the plastic explosives and confusion materials allowed us to derive reflectance spectra, which appear distinct and so suggest that terahertz reflection spectroscopy is a suitable tool for the detection of concealed explosives in security applications.  相似文献   

14.
[15N4]-Hexamethylenetetramine (Hexamine), and [15N4]-3,7-diacetyl-1,3,5,7-tetraazabicyclo[3.3.1]nonane(DAPT) have been prepared starting from 15NH3. Synthetic acetolysis reactions were performed using mixtures of pure [15N4]- and [14N4]-compounds and the destination of the nitrogen isotopes in the products was determined mass spectrometrically. The results show that relatively little isotopic mixing occurs in the acetolysis of hexamine to DAPT though the formation of some products with isotopic composition [14N315N1] and [14N115N3] indicates limited ring cleavage. However the more severe conditions used in the formation of 1,3,5-triacetyl-1,3,5-triazacyclohexane (TRAT) give rise to considerable isotopic scrambling. The acetolysis of DAPT to give 1,3,5,7-tetraacetyl-1,3,5,7-tetraazacyclooctane occurs by selective cleavage of the methylene bridge.  相似文献   

15.
An Agilent 3DCE capillary electrophoresis system using sulfobutylether-beta-cyclodextrin (SB-beta-CD)-ammonium acetate separation buffer pH 6.9 was coupled to a Bruker Esquire 3000+ quadrupole ion trap mass detector via a commercially available electrospray ionization interface with acetonitrile sheath flow. The CE-MS system was applied in negative ionization mode for the resolution and detection of nitroaromatic and polar cyclic or caged nitramine energetic materials including TNT [2,4,6-trinitrotoluene, formula mass (FW) 227.13], TNB (1,3,5-trinitrobenzene, FW 213.12), RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine, FW 222.26) HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, FW 296.16), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, FW 438.19). The CE-MS system conformed to the high-performance liquid chromatography with ultraviolet absorbance detection (HPLC-UV) and HPLC-MS reference methods for the identification of energetic contaminants and their degradation products in soil and marine sediment samples.  相似文献   

16.
Ultraviolet excitation (8-ns duration) is employed to study the decomposition of RDX (1,3,5-trinitro-1,3,5-triazacyclohexane) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane) from their first excited electronic states. Isolated RDX and HMX are generated in the gas phase utilizing a combination of matrix-assisted laser desorption and supersonic jet expansion techniques. The NO molecule is observed as one of the initial dissociation products by both time-of-flight mass spectroscopy and laser-induced fluorescence spectroscopy. Four different vibronic transitions of NO are observed: A (2)Sigma(v(') = 0)<--X (2)Pi(v(") = 0,1,2,3). Simulations of the NO rovibronic intensities for the A<--X transitions show that dissociated NO from RDX and HMX is rotationally cold (approximately 20 K) and vibrationally hot (approximately 1800 K). Another potential initial product of RDX and HMX excited state dissociation could be OH, generated along with NO, perhaps from a HONO intermediate species. The OH radical is not observed in fluorescence even though its transition intensity is calculated to be 1.5 times that found for NO per radical generated. The HONO intermediate is thereby found not to be an important pathway for the excited electronic state decomposition of these cyclic nitramines.  相似文献   

17.
Pyridine, tetramethylguanidine, and hexamethylphosphoramide were evaluated as solvents for the microdetermination of two weakly acidic compounds of ordnance interest, 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX). The titrant was tetrabutylammonium hydroxide in methanol/ toluene. Endpoints were determined potentiometrically by a glass/modified calomel electrode system or by two polarized platinum electrodes.The largest potentiometric break was found in the very basic solvent tetramethylguanidine. Endpoint detection using two polarized platinum electrodes significantly enhanced the precision of the analysis.  相似文献   

18.
A method for enhanced extraction of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from environmental samples is developed with the assistance of sodium dodecyl sulphate (SDS) surfactant. In this study, the concentration of SDS surfactant and other analytical parameters are optimized on a high-performance liquid chromatography-UV system. An isocratic flow of 1.0 mL/min with mobile phase acetonitrile-water; 70:30 (v/v) at 230 nm wavelength on a reverse-phase amide column is used for baseline separation of explosives and making calibration curves. The amount of recovered explosives from spiked soil and water samples are calculated. The limits of detection obtained for HMX and RDX standards are 1.5 and 3.8 ppb (S/N=3), respectively, which are much better than obtained by the Environmental Protection Agency method 8330. The recoveries are found to be enhanced by 1.7 and 1.6-fold with SDS solution as compared to water for HMX and RDX, respectively, from soil samples.  相似文献   

19.
Detection of explosives and their degradation products in soil environments   总被引:2,自引:0,他引:2  
Polynitro organic explosives [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT)] are typical labile environmental pollutants that can biotransform with soil indigenous microorganisms, photodegrade by sunlight and migrate through subsurface soil to cause groundwater contamination. To be able to determine the type and concentration of explosives and their (bio)transformation products in different soil environments, a comprehensive analytical methodology of sample preparation, separation and detection is thus required. The present paper describes the use of supercritical carbon dioxide (SC-CO2), acetonitrile (MeCN) (US Environmental Protection Agency Method 8330) and solid-phase microextraction (SPME) for the extraction of explosives and their degradation products from various water, soil and plant tissue samples for subsequent analysis by either HPLC-UV, capillary electrophoresis (CE-UV) or GC-MS. Contaminated surface and subsurface soil and groundwater were collected from either a TNT manufacturing facility or an anti-tank firing range. Plant tissue samples were taken fromplants grown in anti-tank firing range soil in a greenhouse experiment. All tested soil and groundwater samples from the former TNT manufacturing plant were found to contain TNT and some of its amino reduced and partially denitrated products. Their concentrations as determined by SPME-GC-MS and LC-UV depended on the location of sampling at the site. In the case of plant tissues, SC-CO2 extraction followed by CE-UV analysis showed only the presence of HMX. The concentrations of HMX (<200 mg/kg) as determined by supercritical fluid extraction (SC-CO2)-CE-UV were comparable to those obtained by MeCN extraction, although the latter technique was found to be more efficient at higher concentrations (>300 mg/kg). Modifiers such as MeCN and water enhanced the SC-CO2 extractability of HMX from plant tissues.  相似文献   

20.
Published data on the synthesis of 3,5-disubstituted 1,3,5,7-tetraazabicyclo[3.3.1]nonanes and their transformations into 1,3,5,7-tetraazacyclooctanes and 1,3,5-triazacyclohexanes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号