首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
增塑剂对聚合物电解质锂离子电池性能的影响   总被引:4,自引:0,他引:4  
锂电子;碳纤维;增塑剂对聚合物电解质锂离子电池性能的影响  相似文献   

2.
水分对锂离子电池性能的影响;锂离子电池;电池电化学性能;SEI膜  相似文献   

3.
锂离子电池用聚合物固体电解质的新进展   总被引:8,自引:0,他引:8  
综述了锂离子电池用聚合物固体电解质方面的进展。  相似文献   

4.
用于锂离子电池的聚合物电解质   总被引:4,自引:0,他引:4  
于明昕  周啸 《化学通报》2002,65(4):234-242,233
本文主要依据最近5年来的相关文献,综述了锂离子电池用的聚合物电解质的研究进展。  相似文献   

5.
使用聚合物电解质可以避免传统液态锂离子电池的漏液问题,提高电池的安全性能和能量密度,并可实现电池的薄型化、轻便化和形状可变等优点.目前,聚合物电解质的研究集中在凝胶型的复合和多孔聚合物电解质两大类.本文对各类凝胶聚合物电解质的特点、功能及研究情况逐一进行了介绍,对凝胶聚合物电解质的发展趋势进行了展望.  相似文献   

6.
采用热重/差热分析方法研究了两种热聚合引发剂: AIBN和BPO. 它们通常用于制备锂离子二次电池凝胶态聚合物电解质. 采用不同引发剂制备的凝胶态聚合物电解质具有不同的特性并影响聚合物锂离子二次电池的性能, 例如倍率性能, 高低温性能和循环性能. 为凝胶态聚合物电解质体系选择了一种合适的热引发剂.  相似文献   

7.
锂离子电池用凝胶聚合物电解质研究进展   总被引:2,自引:0,他引:2  
凝胶聚合物电解质是制备高功率密度和高能量密度、长循环寿命的聚合物锂离子电池的重要材料之一。凝胶聚合物电解质由聚合物基体、锂盐和增塑剂等组成。本文重点论述了凝胶聚合物电解质各组成成分的相互作用以及近几年聚合物基体与增塑剂的研究进展。此外,对凝胶聚合物电解质的性能改进进行了讨论,并对凝胶聚合物电解质的应用前景进行了展望。  相似文献   

8.
应用聚丙烯酸盐热解还原法制备L iFePO4/C材料.经XRD和SEM分析,该材料具有橄榄石结构,结晶程度高,粒度分布均匀,粒径约100 nm.恒流充放电实验表明,该材料放电容量为138 mAh/g,循环性能良好.证实聚丙烯酸盐热解还原法是一种制备L iFePO4材料的新型实用方法.  相似文献   

9.
自修复材料可以修复其在外界环境因素作用下产生的局部创伤或微裂纹,大大延长材料的使用寿命.将自修复聚合物作为固态聚合物电解质应用于锂离子电池,可以显著提高锂离子电池的循环稳定性和安全性,延长使用寿命.本文首先概述了自修复聚合物材料的发展历程和修复机理,然后按超分子相互作用和动态共价键分类总结了本征型自修复聚合物电解质应用于锂离子电池的研究进展,最后对自修复聚合物电解质存在的问题和未来的发展方向做出了展望,为下一代高安全性、高性能和长使用寿命的锂离子电池的研究提供借鉴.  相似文献   

10.
新型锂离子电池聚合物电解质的制备   总被引:13,自引:1,他引:12  
应用倒相法,以PVDF-HFP(偏氟乙烯-六氟丙烯)的混合物为基体制备锂离子电池电解质基质,制得的多孔PVDF基质薄膜具有优良的化学性能及机械性能,其拉伸强度为102kg/cm2,吸附锂离子电池电解液(1mol/LLiPF6的EC/DEC溶液)的能力达到自身重量的350%以上,吸液后其室温电导率在10-3S/cm以上,用它组装成原理电池以后呈现了良好的电化学性能.  相似文献   

11.
以碳酸锂、草酸亚铁、纳米二氧化硅为原料,采用机械球磨和固相法相结合的方法制备了Li2FeSiO4正极材料(F)。研究了球磨参数对F电化学性能的影响。结果表明,在球磨速度为500 rad.min-1,球料比[m钢球∶m原料]为15∶1,球径为3 mm的条件下制备的F具有较好的电化学性能。  相似文献   

12.
锂离子电池正极材料的晶体结构及电化学性能   总被引:6,自引:0,他引:6  
正极材料是锂离子电池的重要组成部分。作为提供自由脱嵌锂离子的正极材料,其晶体结构的特点决定了锂离子脱嵌路径方式的不同,并对锂离子电池的电化学性能等产生明显影响。本文根据正极材料的晶体结构和锂离子“脱嵌/嵌入”路径方式的不同,重点讨论了一维隧道结构、二维层状结构和三维框架结构正极材料的晶体结构特点、锂离子“脱嵌/嵌入”路径和其电化学性能之间的关系,主要包括一维隧道结构正极材料LiFePO4,二维层状结构正极材料LiMO2(M=Co, Ni, Mn)、Li1+xV3O8和Li2MSiO4 (M=Fe, Mn) 以及三维框架结构正极材料LiMn2O4和Li3V2(PO4)3。揭示了目前锂离子电池正极材料的研究现状和存在问题,并对今后的发展方向进行了评述。  相似文献   

13.
王锋  胡新良  张鹏  赵双琪  丁瑜 《应用化学》2015,32(10):1184-1189
以十六烷基三甲基溴化铵(CTAB)为模板,硝酸铁和硝酸铜为起始物,采用一步微波法,再经过简单的热处理制备了CuFe2O4负极材料,采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)等测试技术表征材料的结构和形貌。 电化学测试表明,在100 mA/g电流密度,0.01~3.0 V电压条件下,材料的首周嵌脱锂比容量分别为1202.2和873.2 mA·h/g,循环50周后,嵌锂比容量仍保持在近650 mA·h/g,显示出优异的电化学性能。  相似文献   

14.
以三价铁化合物作为铁源,采用碳热还原法一步合成得到锂离子电池正极材料LiFePO4。利用X射线衍射仪、扫描电镜、碳硫分析法和电化学性能测试方法对磷酸铁锂材料的物相结构、表面形貌、含碳量(质量分数)以及电性能进行分析研究。讨论了烧结温度、烧结时间和掺碳量对材料电性能的影响。结果表明,LiFePO4的电性能与烧结温度、时间以及掺碳量有密切的关系,在优化试验条件下制备的正极材料LiFePO4,以电流密度为17 mA·g-1充放电,首次放电容量达到141.8 mAh·g-1,80次循环后放电容量为137.7 mAh·g-1,容量保持率为97.1%。  相似文献   

15.
近几十年,二次锂电池作为重要的储能装置得到迅猛发展,而开发高性能的锂电池电极材料一直是电化学能源领域的研究热点之一。与传统无机正极材料相比,聚合物正极材料具有比容量高、柔软性好、廉价易得、环境友好、加工方便、可设计性强等诸多优点。本文综述了导电聚合物、共轭羰基聚合物以及含硫聚合物正极材料的结构特点、电极反应机理、电化学性能和近五年来的重大研究进展,总结了这三类聚合物电极材料的优缺点,并重点介绍了含硫聚合物电极材料中存在的问题及改进手段,最后提出了综合这三类聚合物优点的含硫共轭导电聚合物将会是该领域的研究方向。  相似文献   

16.
现场热引发聚丙烯酸酯类电解质的性能及应用   总被引:3,自引:0,他引:3  
应用热引发现场聚合方法制备聚丙烯酸酯类电解质,并考察其电化学性能.实验表明:该聚合物电解质具有 4. 5V的电化学稳定窗口,较高的室温电导率及良好的低温性能.当前驱体电解液中液态电解质含量为 85%时,其室温电导率为 3. 2×10-3S·cm-1, -30℃下的电导率达到 5. 6×10-4 S·cm-1.采用现场聚合技术制备的聚合物电池,其电化学性能与液态锂离子电池基本一致,首次充放电效率为 92. 1%, 1. 0C率放电容量为 0. 2C率的 95%, -20℃下的放电容量为室温容量的 72%,以 0. 5C率循环 300周后,仍保持初始容量的 85%以上.  相似文献   

17.
设计合成了一系列聚酰亚胺基的共轭骨架材料用于锂电池负极.首先,选用具有不同共轭体系的二酐分子用作共聚物构建单元,随后通过亚胺化反应与三聚氰胺共缩聚.最后,通过进一步热处理提高材料的交联程度和稳定性.将该材料用于锂离子电池负极表现出稳定的电化学性能.聚合物的倍率性能测试结果表明:在150 mA·g~(-1)的电流密度下,循环150次后,放电比容量达到471 mAh·g~(-1)以上,在2 A·g~(-1)的较大电流密度下,放电比容量达122.1 mAh·g~(-1),当电流密度返回至100 mA·g~(-1)时,其放电比容量又上升至532.3 mAh·g~(-1)左右,材料具有较好的倍率性能,聚合物材料在充放电过程中,避免了有机小分子材料在与锂离子结合后,易溶于电解液造成的容量损失.同时,共聚物骨架的共轭结构单元和极性基团,可在保证材料的导电性的同时增加材料结合锂离子的能力,因此表现出了优异的倍率性能.  相似文献   

18.
王琼  Adel Attia  施志聪  杨勇 《电化学》2008,14(1):30-33
选用合适模板剂由溶胶凝胶法合成高度有序介孔结构的磷酸钛正极材料.研究煅烧温度对材料孔结构及材料的电化学性能的影响,合成样品的结构形貌和比表面分别用XRD、BET、TEM及元素分析仪表征.充放电测试结果表明,该介孔结构正极材料表现出优越的电化学性能,以150 mA/g充放电,首次放电容量高达94 mAh/g,而不含模板剂无孔结构的材料放电容量仅37 mAh/g.  相似文献   

19.
陈军  丁能文  李之峰  张骞  钟盛文 《化学进展》2015,27(9):1291-1301
随着储能电源和电动汽车的迅猛发展,开发高能量密度的锂离子电池成为研究的重点之一。锂离子电池性能的提高很大程度上取决于正极材料的特性。目前,广泛使用的无机正极材料普遍存在容量提升有限、生产过程消耗能源大、存在安全隐患和成本高等缺陷。因此,需要开发比容量更高、安全性更好和在自然界中储量更为丰富的绿色能源材料。与无机正极材料相比,有机物正极材料具有理论比容量高、原料丰富、环境友好、结构可设计性强和体系安全的优点,是一类具有广泛应用前景的储能物质。本文综述了目前国内外已经开展的研究工作,介绍了作为锂离子正极材料的几类主要的有机化合物,包括导电高分子聚合物、含硫化合物、氮氧自由基化合物和含氧共轭化合物等;对比分析了这些化合物的电化学性能、电化学反应机理及其具备的优势和存在的不足;指出了有机化合物作为锂离子正极材料需要解决的问题及今后研究和改进方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号