首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of novel triblock copolymers of poly(stearyl methacrylate)-b-poly(N-isopropylacrylamide)-b-poly(stearyl methacrylate) (PSMA-b-PNIPAAm-b-PSMA) with different molecular weights was synthesized through carboxyl-terminated trithiocarbonates as a highly efficient RAFT agent via reversible addition-fragmentation chain transfer (RAFT) polymerization. The resultant polymers were characterized by 1H NMR, FT-IR spectroscopy, and GPC. By varying the organic solvent used in the self-assembly procedure and adjusting the copolymer composition, multiple morphologies ranging from vesicles and core-shell spherical aggregates with different dimensions to pearl-necklace-like aggregates were obtained. The aggregates showed thermoresponsive and pH-responsive properties through the lower critical solution temperature (LCST) of PNIPAAm and the two carboxyl end groups of the copolymer.  相似文献   

2.
The nature of the self-assembled core-shell interface in gold@silica nanoparticles synthesized via a 3-aminopropyltrimethoxysilane (APTMS) route is investigated using materials synthesis as a sensitive tool for elucidating interfacial composition and organization. Our approach involves condensation of the gold@silica nanoparticles within a silica framework for synthesis of a composite gold-silica material containing approximately 30 wt % gold. This material contains one of the highest gold loadings reported, but maintains gold core isolation as ascertained via a single surface plasmon resonance absorption band frequency corresponding to that of gold nanoparticles in dilute aqueous solution. The immobilized gold cores are subsequently etched using cyanide anion for the synthesis of templated porosity, which corresponds to the space that was occupied by the gold. Characterization of immobilized amines is performed using probe molecule binding experiments, which demonstrate a lack of accessible amines after gold removal. Solid-state 13C CPMAS NMR spectroscopy on these materials demonstrates that the amount of amine immobilization must be less than 10% of the expected yield, assuming that all of the APTMS becomes bound to the gold nanoparticle template. These results require a core-shell interface in the gold@silica nanoparticles that is predominantly occupied by inorganic silicate species, such as Si-O-Si and Si-OH, rather than primary amines. Such a result is likely a consequence of the weak interaction between primary amines and gold in aqueous solution. Our method for investigating the core-shell interface of gold@silica nanoparticles is generalizable for other interfacial structures and enables the synthesis of bulk imprinted silica using colloidal templates.  相似文献   

3.
The silica/polymer hybrid hollow nanoparticles with channels and gatekeepers were successfully fabricated with a facile strategy by using thermoresponsive complex micelles of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine) (PNIPAM-b-P4VP) as the template. In aqueous solution, the complex micelles (PEG-b-PNIPAM/PNIPAM-b-P4VP) formed with the PNIPAM block as the core and the PEG/P4VP blocks as the mixed shell at 45 °C and pH 4.0. After shell cross-linking by 1,2-bis(2-iodoethoxyl)ethane (BIEE), tetraethylorthosilicate (TEOS) selectively well-deposited on the P4VP block and processed the sol-gel reaction. When the temperature was decreased to 4 °C, the PNIPAM block became swollen and further soluble, and the PEG-b-PNIPAM block copolymer escaped from the hybrid nanoparticles as a result of swelled PNIPAM and weak interaction between PEG and silica at pH 4.0. Therefore, the hybrid hollow silica nanoparticles with inner thermoresponsive PNIPAM as gatekeepers and channels in the silica shell were successfully obtained, which could be used for switchable controlled drug release. In the system, the complex micelles, as a template, could avoid the formation of larger aggregates during the preparation of the hybrid hollow silica nanoparticles. The thermoresponsive core (PNIPAM) could conveniently control the hollow space through the stimuli-responsive phase transition instead of calcination or chemical etching. In the meantime, the channel in the hybrid silica shell could be achieved because of the escape of PEG chains from the hybrid nanoparticles.  相似文献   

4.
We report on a robust approach to the size-selective and template-free synthesis of asymmetrically functionalized ultrasmall (<4 nm) gold nanoparticles (AuNPs) stably anchored with a single amphiphilic triblock copolymer chain per NP. Directed NP self-assembly in aqueous solution can be facilely accomplished to afford organic/inorganic hybrid micelles, vesicles, rods, and large compound micelles by taking advantage of the rich microphase separation behavior of the as-synthesized AuNP hybrid amphiphilic triblock copolymers, PEO-AuNP-PS, which act as the polymer-metal-polymer analogue of conventional amphiphilic triblock copolymers. Factors affecting the size-selective fabrication and self-assembly characteristics and the time-dependent morphological evolution of NP assemblies were thoroughly explored.  相似文献   

5.
A novel route for a preparation of eccentric Au-titania core-shell nanoparticles using gold nanoparticles (AuNPs) with block copolymer shells as a template is reported. AuNPs with poly(2-vinyl pyridine)-block-poly(ethylene oxide) (PVP-b-PEO) block copolymer shells are first prepared by UV irradiation of the solution of PVP-b-PEO/HAuCl(4) complexes. Then the sol-gel reaction of titanium tetra-isopropoxide (TTIP) selectively on the surfaces of AuNPs leads to Au-titania core-shell composite nanoparticles. The eccentric Au-titania core-shell nanoparticles are obtained from the Au-titania core-shell composite nanoparticles by removal of organic interlayer by UV treatment. Photocatalytic activities of the resulting eccentric core-shell nanoparticles are investigated in terms of the degradation of methylene blue (MB). The results show that the eccentric core-shell structures endow the catalyst with greatly enhanced photocatalytic activity.  相似文献   

6.
The addition of dodecanethiol to a solution of oleylamine-stabilized gold nanoparticles in chloroform leads to aggregation of nanoparticles and formation of colloidal crystals. Based on results from dynamic light scattering and scanning electron microscopy we identify three different growth mechanisms: direct nanoparticle aggregation, cluster aggregation, and heterogeneous aggregation. These mechanisms produce amorphous, single-crystalline, polycrystalline, and core-shell type clusters. In the latter, gold nanoparticles encapsulate an impurity nucleus. All crystalline structures exhibit fcc or icosahedral packing and are terminated by (100) and (111) planes, which leads to truncated tetrahedral, octahedral, and icosahedral shapes. Importantly, most clusters in this system grow by aggregation of 60-80 nm structurally nonrigid clusters that form in the first 60 s of the experiment. The aggregation mechanism is discussed in terms of classical and other nucleation theories.  相似文献   

7.
Doubly thermoresponsive ABC brush‐linear‐linear triblock copolymer nanoparticles of poly[poly(ethylene glycol) methyl ether vinylphenyl]‐block‐poly(N‐isopropylacrylamide)‐block‐polystyrene [P(mPEGV)‐b‐PNIPAM‐b‐PS] containing two thermoresponsive blocks of poly[poly(ethylene glycol) methyl ether vinylphenyl] [P(mPEGV)] and poly(N‐isopropylacrylamide) (PNIPAM) are prepared by macro‐RAFT agent mediated dispersion polymerization. The P(mPEGV)‐b‐PNIPAM‐b‐PS nanoparticles exhibit two separate lower critical solution temperatures or phase‐transition temperatures (PTTs) corresponding to the linear PNIPAM block and the brush P(mPEGV) block in water. Upon temperature increasing above the first and then the second PTT, the hydrodynamic diameter (Dh) of the triblock copolymer nanoparticles undergoes an initial shrinkage at the first PTT and the subsequent shrinkage at the second PTT. The effect of the chain length of the PNIPAM block on the thermoresponsive behavior of the triblock copolymer nanoparticles is investigated. It is found that, the longer chains of the thermoresponsive PNIPAM block, the greater contribution on the transmittance change of the aqueous dispersion of the triblock copolymer nanoparticles. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2266–2278  相似文献   

8.
A combination of turbidity, light scattering, and steady shear viscosity experiments has revealed that aqueous solutions of an amphiphilic diblock copolymer or a negatively charged triblock copolymer, both containing poly(N-isopropylacrylamide), can undergo a temperature-induced transition from loose intermicellar clusters to collapsed core-shell nanostructures. Turbidity, light scattering, and viscosity results of these short-chain copolymers disclose transition peaks at intermediate temperatures. At high temperatures, the compact core-shell particles from the diblock copolymer aggregate, whereas no renewed interpolymer association is observed for the triblock copolymer or for the solution of the diblock copolymer with added sodium dodecyl sulfate because the electrostatic repulsive interactions suppress the tendency of forming interpolymer clusters. The temperature-induced building up of intermicellar structures and the formation of large aggregates at high temperature in the solution of the diblock copolymer is significantly reduced under the influence of high shear rates.  相似文献   

9.
ZnSe colloidal nanoparticles prepared by the air‐insensitive starting reagents, zinc chloride and selenium powder, have been size‐selected in the Pluronic amphiphilic triblock copolymer [(EO)x(PO)y(EO)x] systems. The size‐selection mechanism between the ZnSe nanoparticles and the triblock copolymers systems is a thermodynamic‐dependent effect. We observe that nanoparticles with special volume (Vs) are trapped first by the triblock copolymers due to the faster entropic depletion interaction arising from the addition of surfactant‐template (micelles) to colloidal nanoparticles. On the other hand, nanoparticles with sizes larger or smaller than Vs will not interact with the surfactant‐templates. They either precipitate quickly by gravity (larger than Vs) or still retain their thermal motion in the aqueous phase (smaller than Vs) when Vs nanoparticles are caught by the surfactant‐templates.  相似文献   

10.
Reversibly photo-cross-linkable pH-responsive block copolymer poly(ethylene oxide)-b-poly((2-(diethylamino)ethyl methacrylate-co-4-methyl-[7-(methacryloyl)oxyethyloxy] coumarin)) (PEO-b-P(DEA-co-CMA)) was synthesized via atom transfer radical polymerization (ATRP). Block copolymer nanogels could be easily prepared by first photo-cross-linking of the micelles at pH > 7 and then adjusting the solution to pH < 7. The photo-cross-linking was proved to be reversibly controlled under alternative irradiation of UV light at 365 nm and 254 nm. As a result, the cross-linking degrees and sizes of the nanogels can be easily controlled by alternatively UV light irradiation. Finally, the nanogels can serve as nanoreactors for the synthesis of gold nanoparticles. The protonated DEA units were first coordinated with HAuCl4, and then the electrostatically bounded AuCl4− anions were reduced to gold nanoparticles by NaBH4. The nanogel-supported gold nanoparticles were used in chemical catalysis. The pH-responsive photo-cross-linked nanogels have been characterized using dynamic light scattering, transmission electron microscopy, UV-vis spectra and 1H NMR spectroscopy measurements, respectively.  相似文献   

11.
Aggregation of thermosensitive polymer-coated gold nanoparticles was performed in aqueous solution in the presence of a triblock copolymer poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (Pluronic P123, PEO(20)-PPO(68)-PEO(20)). The gold nanoparticles, AuNPs, which are covered by thermosensitive statistical copolymers poly(EO(x)-st-PO(y)), aggregate when the temperature is higher than the phase transition temperature of the polymer, leading to a macroscopic precipitation. The presence of Pluronic chains in solution prevents the uncontrolled aggregation of the AuNPs at higher temperature than both the aggregation temperature of the AuNPs (T(agg)) and the critical micellization temperature (cmt) of the Pluronic. The size, the colloidal stability, and the optical properties of the AuNPs aggregates are modulated as a function of the P123-to-AuNP ratio, which constitutes the critical parameter of the system. Moreover, the AuNP aggregation is totally reversible upon decreasing the temperature below T(agg). Our approach constitutes an easy way to the formation of well-controlled nanoparticle aggregates with well-defined sizes. The resulting aggregates have been characterized by UV-vis spectroscopy, dynamic light scattering, and electron microscopy.  相似文献   

12.
We report on a method of fabricating stimuli-responsive core-shell nanoparticles using block copolymers covalently bound to a silica nanoparticle surface. We used the "grafting to" approach to graft amphiphilic block copolymer brushes of poly(styrene-b-2-vinylpyridine-b-ethylene oxide) and poly(styrene-b-4-vinylpyridine) onto silica nanoparticles with two different diameters: colloidal silica 200 nm in diameter and fumed silica 15 nm in diameter. We used the pH-responsive properties of the grafted brush to regulate the interactions between the particles, and between the particles and their environment. We show that this behavior can be applied for a reversible formation of particle aggregates, and can be used to tune and stabilize the secondary aggregates of particles of the appropriate size and morphology in an aqueous environment. The suspensions of the particles form a textured hydrophilic coating on various substrates upon casting and the evaporation of water. Heating above the polymer's glass transition temperature or treatment in acidic water result in back and forth switching between superhydrophobic and hydrophilic surfaces, respectively.  相似文献   

13.
Novel water-soluble dendritic-linear-brush-like triblock copolymer polyamidoamine-b-poly(2-(dimethylamino)ethyl methacrylate)-b-poly(poly(ethylene glycol) methyl ether methacrylate) (PAMAM-b-PDMAEMA-b-PPEGMA)-grafted superparamagnetic iron oxide nanoparticles (SPIONs) were successfully prepared via a two-step copper-mediated atom transfer radical polymerization (ATRP) method. The macroinitiators were immobilized on the surface of Fe(3)O(4) nanoparticles via effective ligand exchange of oleic acid with the propargyl focal point PAMAM-typed dendron (generation 2.0, denoted as propargyl-D(2.0)) containing four carboxyl acid end groups, following a click reaction with 2'-azidoethyl-2-bromoisobutylate (AEBIB). PDMAEMA and PPEGMA were grown gradually from nanoparticle surfaces using the "grafting from" approach, which rendered the SPIONs soluble in water and reversed aggregation. To the best of our knowledge, this is the first report that describes the functionalization of magnetic nanoparticles with dendritic-linear-brush-like triblock copolymers. The modified nanoparticles were systematically studied via TEM, FT-IR, DLS, XRD, NMR, TGA, and magnetization measurements. DLS measurement confirmed that the obtained dendritic-linear-brush-like triblock copolymer-grafted SPIONs had a uniform hydrodynamic particle size of average diameter less than 30 nm. The dendritic-linear-brush-like triblock copolymer-grafted SPIONs possessed excellent biocompatibility by methyl tetrazolium (MTT) assays against NIH3T3 cells and hemolysis assays with rabbit erythrocytes. Furthermore, an anticancer drug, doxorubicin (Dox), was used as a model drug and loaded into the dendritic-linear-brush-like triblock copolymer-grafted SPIONs, and subsequently, the drug releases were performed in phosphoric acid buffer solution pH = 4.7, 7.4, or 11.0 at 37 °C. The results verify that the dendritic-linear-brush-like triblock copolymer-grafted SPIONs possess pH-responsive drug release behavior. The Dox dose of the loaded and free drug required for 50% cellular growth inhibition was 2.72 and 0.72 μm/mL, respectively, according to MTT assay against a Hella cell line in vitro. Therefore, on the basis of its biocompatibility and drug release effect, the modified SPION could provide a charming opportunity to design some excellent drug delivery systems for therapeutic applications.  相似文献   

14.
A study is presented of the preparation of gold nanoparticles incorporated into biodegradable micelles. Poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) copolymer was synthesized by ring-opening polymerization, and the hydroxyl end group of the PCL block was modified with thioctic acid using dicyclohexyl carbodiimide as the coupling reagent. The PEO-b-PCL-thioctate ester (TE) thus obtained was used in a later step to form monolayer protected gold nanoparticles via the thioctate spacer. Gold nanoparticles stabilized with the PEO-b-PCL block (named Au/Block (x/y), where x/y is the mole feed ratio between HAuCl4 and PEO-b-PCL-TE) were prepared and analyzed. Au/Block (1/1), Au/Block (2/1), and Au/Block (3/1) nanoparticles were found to form stable dispersions in the organic solvents commonly used to dissolve the unlabeled block copolymer. The average diameter of the nanoparticles was determined by transmission electron microscopy (TEM) and found to be 6+/-2 nm. Au/Block (4/1) nanoparticle dispersions in organic solvents, on the other hand, were not stable and produced large gold clusters (50-100 nm). Cluster formation was attributed to the low grafting density of the block copolymer, which facilitates agglomeration. For Au/Block (12/1), along the same trend, only an insoluble product was isolated. Micelles in water were prepared by the slow addition of the dilute Au/Block solution in dimethylformamide into a large excess of water with vigorous stirring. Au/Block (1/1) and Au/Block (2/1) formed nanosized structures of 5-7 nm. TEM images of stained Au/Block (1/1) micelles, made in water, clearly showed the formation of core-shell structures. Au/Block (3/1) micelles, on the other hand, were not stable and large agglomerates a few microns in size were observed. The study focuses on the synthesis, characterization, and aggregation behavior of gold-loaded PEO-b-PCL block copolymer micelles, a potential system for drug delivery in conjunction with tissue and subcellular localization studies.  相似文献   

15.
Water-soluble triblock copolymers (PEO-PPO-PEO) are utilized to provide thermoreversible micellar templates for three-dimensional nanoparticle arrays. The triblock forms a cubic micellar structure with typical dimensions of tens of nanometers. The temperature-dependent amphiphilic nature of the block copolymers provides increased structure control and allows the use of pre-made silica and gold nanoparticles as well as globular proteins. Using rheology and small-angle neutron scattering (SANS), we characterize the influence of the nanoparticles on the local particle structure and on the macroscopic mechanical properties. We are able to incorporate significant quantities of nanoparticles into the block copolymer gel without destroying the ordered structure. Contrast matching SANS demonstrates that some level of the template structure is transferred to the nanoparticles. This study demonstrates the feasibility and potential of using this simple approach to generate novel nanoparticles-polymer composites.  相似文献   

16.
The influence of pH value on gold nanoparticle production in the presence of Pluronic stabilizers is systematically investigated. The reactions are studied as a function of pH and at fixed concentrations of the two reactants, HAuCl(4) and P123 block copolymer. Results indicate that the reaction pathway during the nanoparticle formation can be controlled by varying pH. The nanoparticles synthesized at pH=11.12 have an average diameter of 9.6 nm with a narrow size distribution, and the Pluronics are adsorbed on individual gold particle surfaces to form core-shell structures via hydrophobic interactions. The present work provides an economic way to improve the dispersion and stabilization of gold nanoparticles and throws further light on the understanding of gold nanoparticle production using block copolymers.  相似文献   

17.
The self-assembly of the biamphiphilic triblock copolymer poly(ethylene oxide)-b-poly(caprolactone)-b-poly(acrylic acid) into polymer vesicles is studied. The vesicles provide both biocompatibility and biodegradability. Moreover, the biamphiphilic nature of the triblock copolymer provides different surface properties in the interior and in the outer interface of the vesicles. Preparation of the aggregates by direct dissolution of the copolymer in a solution of albumin does not alter the morphology of the aggregates, and thus, they have the potential to immobilize protein molecules. Since a part of the protein is encapsulated in the interior of the vesicles, they can be used as nanocontainers. A further fraction of the protein is bound to the outer interface, which is primarily composed of the poly(acrylic acid) tails. Immobilization of protein on the outer interface can stabilize the colloidal particles and also provide them with a biofunctional component.  相似文献   

18.
Charged colloidal gold nanoparticles (AuNPs) can be assembled and disassembled in an aqueous solution in response to temperature change and display reversible thermoresponsive tuning of plasmon coupling. The reversible tuning was made possible by manipulating the electrostatic interaction through the temperature-dependent zeta potential of the charged AuNPs (see the extinction spectra of a typical AuNP dispersion).  相似文献   

19.
The formation of high concentration gold nanoparticles at room temperature is reported in block copolymer-mediated synthesis where the nanoparticles have been synthesized from hydrogen tetrachloroaureate(III) hydrate (HAuCl(4)·3H(2)O) using block copolymer P85 (EO(26)PO(39)EO(26)) in aqueous solution. The formation of gold nanoparticles in these systems has been characterized using UV-visible spectroscopy and small-angle neutron scattering (SANS). We show that the presence of additional reductant (trisodium citrate) can enhance nanoparticle concentration by manyfold, which does not work in the absence of either of these (additional reductant and block copolymer). The stability of gold nanoparticles with increasing concentration has also been examined.  相似文献   

20.
Gold nanoparticles were fabricated by reduction of highly concentrated Au(III) ions (200 mM) with casein proteins from milk. The gold nanoparticles were converted to nanoparticle-powders after washing and subsequent vacuum drying without aggregation. The nanoparticle-powders completely re-dispersed in aqueous solution, and stable colloidal gold nanoparticles were obtained. UV-vis extinction spectra and dynamic light scattering (DLS) measurements revealed that large assemblies (size, ca. 3 μm) and subaggregates (size, <0.5 μm) composed of gold nanoparticle-casein protein chain-Au(III) ion were dynamically formed and disintegrated over the course of the growth of the gold nanoparticles. Fourier transform infrared (FT-IR) spectra indicated conformational changes of casein proteins induced by the interaction of casein protein-Au(III) ion and -gold nanoparticle. Finally, rapid, one-pot, and highly concentrated synthetic procedures of gold and silver nanoparticle powders protected by casein (mean diameters below 10 nm) were successfully developed using 3-amino-1-propanol aqueous solutions as reaction media. Dense colloidal gold (40 g L(-1)) and silver (22 g L(-1)) nanoparticle aqueous solutions were obtained by re-dispersing the metal nanoparticle powders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号