首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The high-resolution spectrum of cyanogen (14N12C12C14N) has been measured from 500 to 4900 cm−1. For this isotopomer many combination levels with both degenerate fundamentals, ν4 and ν5, have been measured for the first time and the effects of vibrational l-type resonance are observed as well as rotational l-type resonance. The effects of the vibrational resonance coupling ν2 and 2ν4 have also been studied. The data have been combined with earlier measurements below 500 cm−1 to give a comprehensive catalog of the vibrational energy levels and the rovibrational constants for the normal isotopomer of cyanogen. A comparison of the term value constants for the three major symmetric isotopomers is given and they are compared with a recent ab initio calculation. The present data were combined with earlier work on the two symmetric isotopomers, 13C214N2 and 12C215N2, to obtain the equilibrium bond lengths, rCC = 138.109(60) pm and rCN = 115.976(40) pm.  相似文献   

2.
Several new infrared absorption bands for 32S16O3 have been measured and analyzed. The principal bands observed were ν1+ν2 (at 1561 cm−1), ν1+ν4 (at 1594 cm−1), ν3+ν4 (at 1918 cm−1), and 3ν3 (at 4136 cm−1). Except for 3ν3, these bands are very complicated because of (a) the Coriolis coupling between ν2 and ν4, (b) the Fermi resonance between ν1 and 2ν4, (c) the Fermi resonance between ν1 and 2ν2, (d) ordinary l-type resonance that couples levels that differ by 2 in both the k and l quantum numbers, and (e) the vibrational l-type resonance between the A1 and A2 levels of ν3+ν4. The unraveling of the complex pattern of these bands was facilitated by a systematic approach to the understanding of the various interactions. Fortunately, previous work on the fundamentals permitted good estimates of many constants necessary to begin the assignments and the fit of the measurements. In addition, the use of hot band transitions accompanying the ν3 band was an essential aid in fitting the ν3+ν4 transitions since these could be directly observed for only one of four interacting states. From the hot band analysis we find that the A1 vibrational level is 3.50 cm−1 above the A2 level, i.e., r34=1.75236(7) cm−1. In the case of the 3ν3 band, the spectral analysis is straightforward and a weak Δk=±2, Δl3=±2 interaction between the l3=1 and l3=3 substates locates the latter A1 and A2 “ghost” states 22.55(4) cm−1 higher than the infrared accessible l3=1 E state.  相似文献   

3.
The Fourier transform gas-phase infrared spectrum of pyrrole, C4H5N, has been recorded with a resolution of ca. 0.003 cm−1 in the 900-1500 cm−1 spectral region. Four fundamental bands, ν8(A1; 1016.9 cm−1), ν23(B2; 1049.1 cm−1), ν7(A1; 1074.6 cm−1), ν20(B2; 1424.4 cm−1) and the overtone band 2ν16(A1; 962.7 cm−1) have been analysed using the Watson model. The ν8 and 2ν16 bands are unperturbed; the ν7 and ν23 bands are locally perturbed, while the ν20 band is globally perturbed by weak c-Coriolis resonance. Upper state vibrational term values, and rotational and centrifugal distortion constants, have been obtained from fits using S-reduction and Ir-representation as well as A-reduction and IIIr-representation. A set of ground state rotational and centrifugal distortion constants using A-reduction was obtained from a simultaneous fit of ground state combination differences from all five bands and previous microwave and millimetre-wave data.  相似文献   

4.
The high-resolution infrared spectrum of cyclopropane (C3H6) has been measured from 100 cm−1 to 2200 cm−1. In that region we have identified 24 absorption bands attributed to six fundamental bands, five combination bands, three hot bands and 10 difference bands. Long pathlength spectra, up to 32 m, facilitated the identification and analysis of many previously unstudied infrared inactive, and Raman and infrared inactive vibrational states, including direct access to two forbidden fundamental states, ν4 and ν14. An improved set of constants for the ground vibrational state as well as for the fundamental vibrations ν7, ν9, ν10, ν11 are also reported. The spectral resolution of the measurements varied from 0.002 cm−1 to 0.004 cm−1.  相似文献   

5.
Two new bands, 2ν1+ν2+ν3+2ν5 and 5ν3 with origin at 12220.692 and 12496.158 cm−1, respectively, were identified on new FT-ICLAS spectra of 12C2HD and rotationally analyzed. The rotational analysis of two known bands, with origin at 12038.538 and 12234.872 cm−1 was extended. Another band, 2ν1+2ν5 with origin at 7843.6622 cm−1, was identified for the first time and rotationally analyzed, from a high pressure conventional FT spectrum. Some 115 known vibrational state energies in the molecule, extending up to the visible range, were used to produce updated vibrational constants. Both a straightforward Dunham model and a global model accounting for a single anharmonic resonance, K1/255, were used. The results are discussed.  相似文献   

6.
The absorption spectrum of the ν6 band of C2H3D centered near 1125.27674 cm−1 in the 1100-1250 cm−1 region was recorded with an unapodized resolution of 0.0063 cm−1 using a Fourier transform infrared (FTIR) spectrometer. A total of 947 infrared transitions of the A-B hybrid-type band were assigned and fitted to upper-state (ν6 = 1) rovibrational constants using a Watson’s A-reduced Hamiltonian in the Ir representation up to eighth-order centrifugal distortion terms. The b-type infrared transitions of the band were analyzed for the first time. The root-mean-square deviation of the fit was 0.00062 cm−1. The ground-state rovibrational constants up to eighth-order terms were also obtained by a fit of 617 combination differences from the present infrared measurements, simultaneously with 21 microwave frequencies with a root-mean-square deviation of 0.00055 cm−1. From this work, the upper-state (ν6 = 1) and ground-state constants of C2H3D were derived with the highest accuracy, so far. The a- and b-type transitions of the hybrid ν6 band were found to be relatively free from local frequency perturbations. The ratio of the a- to b-type vibrational dipole transition moments (μa/μb) was found to be 1.05 ± 0.10. From the ν6 = 1 rovibrational constants obtained, the inertial defect Δ6 was calculated to be 0.3570 ± 0.0008 μÅ2.  相似文献   

7.
We have measured the Fourier transform spectrum (FTS) of two isotopomers of hydrogen cyanide (H12C14N and H12C15N) from 500 to 10 000 cm−1. The infrared data have been combined with earlier published microwave and submillimeter-wave measurements. From this analysis new vibration–rotation energy levels and constants are given, based on the observation of a number of new vibrational levels, especially for H12C15N. The Coriolis interaction involving Δv3= −1, Δv2= 3, and Δl= ±1 has been observed for a great many levels and in some cases the assignments of laser transitions allowed by this interaction are more clearly shown. New vibration–rotation constants are given that allow one to predict the transition wavenumbers for most of the transitions below 10 000 cm−1with accuracies of about 0.5 cm−1or better. Values are given for the power series expansion of thel-type resonance constants and for the centrifugal distortion constants, as well as the usual vibrational and rotational constants.  相似文献   

8.
High-resolution infrared measurements of the OH-stretching mode of oxadisulfane, HSOH, at 3625 cm−1 have been recorded using a Bruker IFS 120 HR Fourier transform spectrometer. More than 1300 lines have been assigned to the ν(OH) fundamental vibration mode, which is a hybrid band showing a c-type perpendicular band and an a-type parallel band spectrum of an asymmetric rotor molecule. The splitting due to the torsional-tunneling has not been observed in this band. The band center position at 3625.59260(20) cm−1 as well as rotational and centrifugal distortion constants for the ν(OH) vibrational excited state have been obtained from a least-squares fit analysis of a semirigid rotor. In addition the αOH experimental vibration-rotation correction terms of the OH-stretching mode have been derived and compared to values used in an earlier semi-empirical calculation of the HSOH structure. All data are in very good agreement with high level ab initio calculations and confirm the assignment of an earlier matrix isolation spectrum at 3608 cm−1 to the ν(OH) fundamental mode.  相似文献   

9.
The Fourier transform gas-phase IR spectrum of 1,3,4-thiadiazole, C2H2N2S, has been recorded with a resolution of ca. 0.003 cm−1 in the 800-1500 cm−1 spectral region. Five fundamental bands ν2(A1; 1391.9 cm−1), ν4(A1; 964.4 cm−1), ν5(A1; 894.6 cm−1), ν9(B1; 821.5 cm−1), and ν14(B2; 898.4 cm−1) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from fits. The ν4 and ν9 bands are unperturbed while a strong c-Coriolis resonance perturbs the close-lying ν5 and ν14 bands. This dyad system has been analysed by a model including first and second order c-Coriolis resonance using the theoretically predicted Coriolis coupling constant . The ν2 band is strongly perturbed by a local resonance, and we obtain a set of spectroscopic parameters using a model including second order a-Coriolis resonance with the inactive ν10 + ν14 band. Ground state rotational and quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational α-constants predicted by quantum chemical calculations using a cc-pVTZ basis and B3LYP methodology, have been compared with the present experimental data, where there is generally good agreement.  相似文献   

10.
The weak 2ν3 overtone band of the three isotopomers of cyanogen iodide, I12C14N, I13C14N, and I12C15N, has been recorded in the range from 4200 to 4400 cm−1 with a resolution of 0.02 cm−1 using a Fourier transform infrared spectrometer. The following band origins have been determined from the analysis of the spectra: ν0 (I12C14N)=4332.8368 cm−1, ν0 (I13C14N)=4235.7355 cm−1, and ν0 (I12C15N)=4274.2851 cm−1. This allowed us to achieve complete knowledge of the energies for all levels of ICN corresponding to double vibrational excitation. An improved evaluation of the quartic force field of cyanogen iodide has been performed using the new data obtained together with those already known from previous works.  相似文献   

11.
The Fourier transform infrared (FTIR) spectrum of the ν3 band of C2H3D was measured at an unapodized resolution of 0.0063 cm−1 in the 1240-1340 cm−1 region. Rovibrational constants for the upper state (ν3 = 1) up to five quartic and two sextic centrifugal distortion terms had been obtained by assigning and fitting a total of 1037 infrared transitions using a Watson’s A-reduced Hamiltonian in the Ir representation. The root-mean-square deviation of the fit was 0.00051 cm−1. The ground state rovibrational constants were also determined by a fit of 674 combination differences together with 21 microwave frequencies from the present infrared measurements with a root-mean-square deviation of 0.00040 cm−1. The upper state (ν3 = 1) and ground state rovibrational constants of C2H3D represent the most accurate values obtained so far. The A-type ν3 band, centred at 1288.788826 ± 0.000044 cm−1 was found to be relatively free from local frequency perturbations. From the ν3 = 1 rovibrational constants obtained, the inertial defect Δ3 was 0.1619724 ± 0.0000001 μÅ2.  相似文献   

12.
High resolution infrared spectra of 121SbHD2 and 123SbHD2 have been studied in the region of ν1, the Sb-H stretching fundamental, from 1780 to 1990 cm−1. The 2ν1 stretching overtone band of 123SbHD2, located in the 3640-3790 cm−1 range, has also been investigated. The SbHD2 molecule is an asymmetric rotor of Cs symmetry with the asymmetry parameter κ = 0.61. The ν1 band is of hybrid type, formed by strong C-type and weak B-type transitions, and almost unperturbed. For 123SbHD2, 2092 transitions have been assigned: 70% of these belong to the C component, the other 30% are of B-type. The assigned transitions have been fitted using a Watson type S-reduced Hamiltonian in the IIIl representation, with a standard deviation of the fit σ = 0.45 × 10−3 cm−1. In order to determine the ground state parameters all possible ground state combination differences (GSCD) have been generated from the ν1 transitions. In total, 3942 GSCD up to J = 27,  = 25, and  = 20 have been fitted with σ = 0.52 × 10−3 cm−1. Only C-type transitions have been observed in the weak 2ν1 overtone band. The 556 assigned transitions have been fitted with σ = 2.6 × 10−3 cm−1 using the same Hamiltonian as for ν1. In the ν1 band of 121SbHD2 771 C-type transitions have been assigned, and the v1=1 spectroscopic constants obtained from a fit with σ = 0.70 × 10−3 cm−1. Using 618 GSCD the ground state spectroscopic constants of 121SbHD2 have been derived with σ = 1.0 × 10−3 cm−1. The molecular parameters for the ground and the v1=1 states of the two isotopologues agree well. The quartic theoretical ab initio force field of SbH3 has been used to predict all relevant spectroscopic parameters for 123SbHD2, 121SbHD2, 123SbH2D, and 121SbH2D. Relations between the harmonic frequencies and between the anharmonicity constants obtained in the expanded local mode theory, for the XH3 → XH2D/XHD2 isotopic substitution, have been compared with those obtained in the present study.  相似文献   

13.
The Fourier transform infrared spectrum of gaseous thiophene, C4H4S, has been recorded in the 600-1200 cm−1 spectral region with a resolution of ca. 0.0030 cm−1. Five fundamental bands ν13 (B1, 712.1 cm−1), ν7 (A1; 840.0 cm−1), ν6 (A1; 1036.4 cm−1), ν5 (A1; 1081.5 cm−1) and ν19 (B2; 1084.0 cm−1) have been analysed by the standard Watson model (A-reduction). Ground state rotational and quartic centrifugal distortion constants have been obtained from a simultaneous fit of ground state combination differences from four of these bands and previous microwave transitions. Upper state spectroscopic constants have been obtained for all five bands from single band fits using the Watson model. A strong c-Coriolis resonance perturbs the close lying ν5 and ν19 bands. We have analysed this dyad system by a model including first and second order Coriolis resonance using the theoretically predicted Coriolis coupling constant . From this analysis we locate the previously unobserved ν19 band at 1083.969 cm−1. The rotational constants, ground state quartic centrifugal distortion constants, anharmonic frequencies, and vibration-rotational constants (α-constants) predicted by quantum chemical calculations using a cc-pVTZ basis with B3LYP methodology, are compared with the present experimental data, where there is generally good agreement. A complete set of anharmonic frequencies and α-constants for all fundamental levels of the molecule is given.  相似文献   

14.
The Fourier transform gas-phase IR spectrum of oxazole, C3H3NO, has been recorded with a resolution of ca. 0.0030 cm−1 in the wavenumber region 600-1400 cm−1. The rotational structures of 10 fundamental bands (four of a-type, three of b-type and three of c-type) have been analysed using the Watson model. Ground state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from the fits. A number of perturbations have been identified in the bands. From a local crossing observed in ν15 we located the very weak ν14 band at 858.19(1) cm−1. Also ν13 is definitively located at 899.3 cm−1. The three global c-Coriolis interacting dyads ν9/ν10, ν10/ν11, and ν12/ν13 have each been analysed by a model including first and second order Coriolis resonance using ab initio predicted first order Coriolis coupling constants; second order Coriolis interaction parameters are determined. The rotational constants, harmonic and anharmonic frequencies, intensities, and vibration-rotation constants (alphas, ) have been predicted by quantum chemical calculations using a cc-pVTZ basis at the MP2 and B3LYP methodology levels, and compared with the present experimental data. Both the rotational constants and frequencies are marginally closer to experiment from the B3LYP calculations. In order to make more significant comparisons between theory and experiment for the alphas, we take differences between ground and vibronic state values; under these circumstances, the B3LYP definitely have a closer fit to experiment.  相似文献   

15.
Rotationally resolved vibrational spectra of the three lowest frequency bands of the four-membered heterocycle azetidine (c-C3H6NH) have been collected with a resolution of 0.00096 cm−1 using the far infrared beamline at the Canadian Light Source synchrotron. The modes observed correspond principally to motions best described as: β-CH2 rock (ν14) at 736.701310(7) cm−1, ring deformation (ν15) at 648.116041(8) cm−1, and the ring puckering mode (ν16) at 207.727053(9) cm−1. A global fit of 14 276 rovibrational transitions from the three bands provided an accurate set of ground state spectroscopic constants as well as excited state parameters for each of the three vibrational modes. The ground state structure was determined to be that of the puckered conformer having the NH bond in an equatorial arrangement.  相似文献   

16.
Two hot bands in the infrared spectrum of formaldehyde (H2CO) have been identified by means of tunable infrared laser spectroscopy using a jet-cooled sample. One band falls in the region 2760-2800 cm−1; it follows a-type selection rules and it has been assigned as the ν1 + ν4 − ν4 hot band. The other band falls in the region 2800-2860 cm−1; it follows b-type selection rules and it has been assigned as the ν5 + ν4 − ν4 hot band. The observations are restricted to low J and Ka levels. It has consequently been possible to ignore the effects of the extensive Coriolis couplings involving these levels in the analysis of the spectra and to model the rotational structure as that of a simple asymmetric top. Least-squares fits of the data have provided values for the band origins: 2774.2706(11) cm−1 for the ν1 + ν4 − ν4 and 2829.2621(8) cm−1 for the ν5 + ν4 − ν4 band. Term values for the upper vibrational levels involved in the transitions have been determined by use of the previously reported term values for the v4 = 1 level.  相似文献   

17.
The Fourier transform infrared gas-phase spectrum of thiazole, C3H3NS, has been recorded in the 600-1400 cm−1 wavenumber region with a resolution around 0.0030 cm−1. Nine fundamental bands (ν5(A′) to ν11(A′), ν15(A″), and ν16(A″)) are analysed employing the Watson model. Ground-state rotational and quartic centrifugal distortion constants as well as upper state spectroscopic constants have been obtained from the fits. A detailed analysis of perturbations identified in the ν11(A′) band at 866.5 cm−1 enables a definitive location of the very weak ν10(A′) and ν14(A″) bands at 879.3 and 888.7 cm−1, respectively. The three levels are analysed simultaneously by a model including Coriolis resonance using an ab initio predicted first order c-Coriolis coupling constant; second and higher order Coriolis parameters are determined. Qualitative explanations in terms of Coriolis resonances are given for a number of crossings observed in ν5(A′), ν6(A′), and ν7(A′) at 1383.7, 1325.8, and 1240.5 cm−1, respectively. The rotational constants, anharmonic frequencies, and vibration-rotation constants (alphas, ) calculated by quantum chemical calculations using a cc-pVTZ and TZ2P basis with B3LYP methodology, have been compared with the present experimental data. The rotation constant differences for each vibrational state, from the ground state values, are closer to experiment from the TZ2P calculations relative to those using cc-pVTZ. The values for ΔJ, ΔJK, ΔK, δJ, and δK are close to experiment with both basis sets.  相似文献   

18.
The hot band system ν9 + ν11 ? ν11, ν10 + ν11 ? ν11 in allene-d4 was studied at a resolution near 0.010 cm?1. About 1500 partly overlapped hot band rotational lines were assigned and fitted to a model taking into account z-Coriolis resonance between the combination levels ν9 + ν11 and ν10 + ν11 as well as vibrational l-type resonances within these levels. Upperstate constants have been derived from an analysis in which the constants for the ν11 level were constrained. A detailed study of rotational as well as vibrational l-type doublings occurring in the KΔK = ?1 subband is presented, and the sign of vibrational l-type doubling constants for the ν10 + ν11 level is determined. A localized (x, y)-Coriolis resonance between ν10 + ν11 and ν4(B1) + ν11 is discussed and the interaction parameter is obtained as well as some constants for ν4 + ν11.  相似文献   

19.
The Fourier transform infrared absorption spectrum of the ν12 fundamental band of ethylene-d (C2H3D) was recorded at an unapodized resolution of 0.0063 cm−1 in the 1330-1475 cm−1 region. Upper state (ν12 = 1) rovibrational constants inclusive of three rotational, five quartic, and four sextic centrifugal distortion constants were improved by assigning and fitting 1444 infrared transitions using Watson’s A-reduced Hamiltonian in the Ir representation. The present analysis yielded more higher-order upper state constants than previously reported. The rms deviation of the fit is 0.00055 cm−1. Improved ground state rovibrational constants were also determined from the combined fit of 2026 ground state combination differences (GSCD) from the assigned infrared transitions of the ν12, ν3 and ν6 bands and 21 microwave frequencies of C2H3D. The rms deviation of the GSCD fit is 0.00047 cm−1. The A-type ν12 band is centered at 1400.76262 ± 0.00004 cm−1. Local frequency perturbations were not detected in the analysis. The calculated inertial defect Δ12 is 0.20809 ± 0.00003 μÅ2.  相似文献   

20.
The Fourier transform infrared (FTIR) absorption spectrum of the ν12 fundamental band of ethylene-d4 (C2D4) was recorded in the 1017-1137 cm−1 region with an unapodized resolution of 0.0063 cm−1. Upper state (v12 = 1) rovibrational constants consisting of three rotational and five quartic constants were improved by assigning and fitting 2103 infrared transitions using Watson’s A-reduced Hamiltonian in the Ir representation. The band centre of the A-type ν12 band is found to be 1076.98480 ± 0.00002 cm−1. The present analysis covering a wider wavenumber range and higher J and Kc values yielded upper state constants including the band centre which are more accurate than previously reported. The rms deviation of the upper state fit is 0.00045 cm−1. Improved ground state rovibrational constants were also determined from the fit of 1247 ground state combination differences (GSCD) from the presently-assigned infrared transitions of the ν12 band of C2D4. The rms deviation of the GSCD fit is 0.00049 cm−1. In the rovibrational analysis, local frequency perturbations were not detected even at high J and Ka values. The calculated inertial defect Δ12 is 0.32551 ± 0.00001 μÅ2. The line intensities of the individual transitions in the ν12 band were measured and the band strength of 39.8 ± 2.0 cm−2 atm−1 was derived for the ν12 band of C2D4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号