首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
In the field of optoelectronics, circular dichroism (CD) has caused great research interest because it is widely used in imaging and biosensing. A new method for dynamically controlling terahertz (THz) CD in metamaterials is proposed. By introducing chirality and graphene to metamaterials, a pair of chiral structures with completely opposite responses to left-handed circularly polarized (LCP) waves and right-handed circularly polarized (RCP) waves are designed. The influencing factors of CD are explored, including the gap of the structure, the linewidth of graphene, and the Fermi level of graphene. The largest CD (ΔR) is 77%. The CD can be actively modulated in a modulation range of 39–77% and the modulation depth is up to 38%. In addition, two-channel and four-channel chiral metasurfaces for near-field imaging are designed in this way. Good imaging effects and on (“1”) or off (“0”) effects of the multichannel metasurface are demonstrated. This work provides new ideas for the design of tunable metasurfaces and promotes the application of metasurfaces in THz dynamic imaging.  相似文献   

2.
A light-emitting microcavity with sculptured-thin-film (STF) chiral reflectors is fabricated to produce narrowband circularly polarized (CP) light. The device is composed of a layer of fluorescent molecules (Alq3) sandwiched between two STF chiral reflectors to form a resonant microcavity with CP-selectivity, which emits narrowband left CP (LCP) and right CP (RCP) light upon photoexcitation. Our results also indicate the possibility of developing STF reflector-based diode laser devices delivering pure and controllable circular polarization.  相似文献   

3.
Asymmetric transmission (AT) reflects the conversion efficiency of a chiral nanostructure for circularly polarized light and is widely used in polarization and optoelectronic devices. In this study, a new mechanism is proposed to generate AT when a planar chiral nanostructure is illuminated under left‐handed circularly polarized (LCP) and right‐handed circularly polarized (RCP) light illumination. The new mechanism can be achieved by breaking the symmetry of the designed planar chiral nanostructure which give rise to a new transmittance peak and dip at a particular wavelength under RCP and LCP light illumination, respectively. The proposed new mechanism is also capable of actively tuning the generated resonant modes. Besides this, when graphene strips are added to the designed planar chiral nanostructure, similar results are obtained as that from breaking the symmetry of the planar chiral nanostructure. In this case, the generated AT could also be actively tuned by varying the Fermi energies of graphene strips.  相似文献   

4.
A left-handed chiral sculptured thin film (STF) that reflects strongly at the wavelength of the circular Bragg resonance tends to partially convert the handedness of incident LCP (left-circularly-polarized) light to RCP (right-circularly-polarized). We show that the cross-polarized component of the reflected RCP beam can be eliminated by interference with an additional RCP beam that is reflected at the interface of an isotropic cover and an AR (antireflecting) layer. For best results the refractive index and thickness of the AR layer need to accommodate a phase change on reflection that occurs at the chiral film. Effective suppression of the reflectances RRR, RRL, RLR and the transmittances TRL, TLR can be achieved by sandwiching the chiral reflector between such amplitude and phase-matched AR coatings. Co-polarized chiral reflectors of this type may form efficient handed optical resonators. For LCP light the optical properties of such a handed resonator are formally the same as the properties of the isotropic passive or active Fabry–Perot resonators, but the handed resonator is transparent to RCP light.  相似文献   

5.
Bi-Yuan Wu 《中国物理 B》2022,31(4):44101-044101
Chiral structures are promising in many applications, such as biological sensing and analytical chemistry, and have been extensively explored. In this paper, we theoretically investigate the chiral response of twisted bilayer α-MoO3. Firstly, the analytical formula for the transmissivity is derived when the structure is illuminated with circularly polarized plane waves. Furthermore, the results demonstrate that the twisted bilayer α-MoO3 can excite the strong chirality with the maximum circular dichroism (CD) of 0.89. In this case, the chirality is due to the simultaneous breaking the rotational symmetry and mirror symmetry, which originates from the relative rotation of two α-MoO3 layers. To better understand the physical mechanism, the polarization conversion between the left-hand circular polarization (LCP) and right-hand circular polarization (RCP) waves is discussed as well. Moreover, it is found that the structure can maintain the strong chirality (CD> 0.8) when the twisted angle varies from 69° to 80°, which effectively reduces the strictness in the requirement for rotation angle. In addition, the CD can be larger than 0.85 when the incidence angle of circularly polarized plane wave is less than 40°, implying that the chirality is robust against the angle of incidence. Our work not only provides an insight into chirality induced by the twisted bilayer α-MoO3, but also looks forward to applications in biological sensing.  相似文献   

6.
In this paper, an ultra-wideband chirality selective metastructure absorber is proposed that enables differential absorption and reflection of circularly polarized waves in the terahertz (THz) range. The structure achieves circular dichroism (CD) by using asymmetrically split metal rings as fundamental meta-atoms. Most critically, the high impedance surface and air-resonant cavities are inserted separately in the meta-atoms and dielectric substrate to enhance CD and broaden the bandwidth of absorption. The metastructure absorber can achieve more than 90% absorption of right circularly polarized waves at 0.675–1.244 THz, and it can maintain more than 90% reflection of left circularly polarized waves at 0.607–1.229 THz without changing the direction of rotation. Besides, its CD can reach more than 80% at 0.687–1.213 THz with a relative bandwidth of 55.3%. Spin-selective absorption, which is closely related to breaking chiral symmetry, is investigated through power loss distribution, wide-angle incidence, and scan parameter optimization. The proposed strategy is further validated in the THz band, and the polarization selection and manipulation techniques can be applied to chiral sensing/radio-thermometry, circular polarization detectors/lasers, and molecular spectroscopy.  相似文献   

7.
Polarized terahertz (THz) wave generation is of great significance for chiral and anisotropic sensing applications. However, how to manipulate amplitude, polarization, and ellipticity of the THz generation is still a fundamental challenge. Herein, polarized THz wave generation is achieved from a bilayer metamaterial consisting of T-shaped structure (TSS) and split resonator rings (SRRs) by combining Maxwell and hydrodynamic equations. The elliptically polarized THz wave can be synthetized directly from horizontally and vertically polarized THz components due to the orthogonal nonlinear photocurrents along the arm-directions of TSS and SRRs, respectively. Besides, the ellipticity and the orientation angle of the THz polarization ellipse can be modulated by the twist angle between the SRRs and TSS layers. The maximum ellipticity can reach 0.34 while the orientation angle is tunable from −0.45 to 0.48π by tuning the twist angle. This work proposes an interlayer coupling method for the polarized THz sources based on metamaterials in potential circular dichroism and chiral sensing applications.  相似文献   

8.
We present a bi-layer Y-shaped chiral metamaterial (CMM) that can realize a giant optical activity and circular dichroism (CD) effect to the incident linear polarization wave in the terahertz (THz) region. Numerical simulation results exhibit that the pronounced CD effect with a great difference between the transmission coefficients for the circularly polarized waves can be obtained at 5.06 THz, meanwhile the 90°-polarization rotation can be observed at 5.2 THz when a y-polarized wave is incident to this CMM propagating along the −z-axis. The mechanism of the optical activity and giant CD effect is illustrated by simulated surface current distributions. Further, the influences of the structural parameters of the proposed CMM to the optical activity and CD effect have been investigated numerically.  相似文献   

9.
The frequency-dependent circular dichroism is proposed to extend the wave manipulating capability of coding metasurfaces. As a proof of concept, the bispectral circular dichroic coding metasurfaces (CDCMs) are realized using circular dichroism resonators (CDRs) implemented via introducing loss resistors into the circular polarization conversion resonators. The CDRs are distinguished into left-handed CDRs and right-handed CDRs. Left-handed CDRs absorb left-handed circularly polarized (LCP) wave and convert right-handed circularly polarized (RCP) wave into LCP wave. Conversely, they are defined as right-handed CDRs. Two bispectral CDRs are designed with the left-handed (right-handed) and right-handed (left-handed) working bands in 7–8.5 and 22.2–22.5 GHz, respectively. And then, 1 bit bispectral CDCM with 0101…/1010… coding sequence is designed. Simulated results indicate that the designed CDCM strongly absorb the incident LCP (RCP) waves in the frequency region 7–8.5 GHz (22.2–22.5 GHz), but the incident RCP (LCP) waves are anomalously reflected into four beams of the LCP (RCP) waves with high efficiency. The measured results agree well with the simulations. The results in this work may provide an effective solution for the inverse and helicity-dependent manipulation of the electromagnetic waves in two distinct frequency regions.  相似文献   

10.
Guangzhou Geng 《中国物理 B》2022,31(12):124207-124207
The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spin-controlled nanophotonic devices. However, realization of the asymmetrical photonic spin Hall effect with a single optical element is still a challenge due to the conjugation of the Pancharatnam-Berry phase, which reduces the flexibility in various applications. Here, we demonstrate an asymmetrical spin-dependent beam splitter based on a single-layer dielectric metasurface exhibiting strong and controllable optical response. The metasurface consists of an array of dielectric nanofins, where both varying rotation angles and feature sizes of the unit cells are utilized to create high-efficiency dielectric metasurfaces, which enables to break the conjugated characteristic of phase gradient. Thanks to the superiority of the phase modulation ability, when the fabricated metasurface is under normal incidence with a wavelength of 1550 nm, the left-handed circular polarization (LCP) light exhibits an anomalous refraction angle of 28.9°, while the right-handed circular polarization (RCP) light transmits directly. The method we proposed can be used for the flexible manipulation of spin photons and has potentials in high efficiency metasurfaces with versatile functionalities, especially with metasurfaces in a compact space.  相似文献   

11.
A new circularly polarized (CP) Raman spectrometer is described that demonstrates simultaneous acquisition of all four forms of circular polarization Raman optical activity (ROA). The instrument is a design extension of a commercially available back scattering circular polarization (SCP) ROA spectrometer. Circular polarization of the incident beam is introduced with a quarter‐wave plate, and a half‐wave plate alternately positioned in and out of the beam controls the modulation between right circular polarization (RCP) or left circular polarization (LCP) states. Combining this modulation with the simultaneous detection of RCP and LCP scattered Raman radiation allows the measurement of incident circular polarization (ICP), SCP, in‐phase dual circular polarization(DCPI) and out‐of‐phase DCPII‐ROA. In addition, three different forms of backscattered Raman spectra, namely unpolarized, highly polarized, and depolarized Raman spectra, as well as a degree of circularity spectrum are obtained. The performance of the new all‐CP ROA spectrometer is evaluated with neat α‐pinene and aqueous hen lysozyme solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A detailed study of the degree of circular polarization and the angular dependence of the emission spectra of an array of InAs quantum dots embedded in GaAs photonic nanostructures with chiral symmetry in the absence of an external magnetic field is carried out. A strong angular dependence of the spectra and the degree of circular polarization of radiation from quantum dots, as well as a significant effect of the lattice period of the photonic crystal on the radiation characteristics, is observed. The dispersion of photonic modes near the (±3, 0) and (±2, ±2) Bragg resonances is investigated in detail. The experimentally observed polarization, spectral, and angular characteristics of the quantum-dot emission are explained in the framework of a theory describing radiative processes in chiral photonic nanostructures.  相似文献   

13.
Nature provides impressive examples of chiral photonic crystals, with the notable example of the cubic so-called srs network (the label for the chiral degree-three network modeled on SrSi2) or gyroid structure realized in wing scales of several butterfly species. By a circular polarization analysis of the band structure of such networks, we demonstrate strong circular dichroism effects: The butterfly srs microstructure, of cubic I4(1)32 symmetry, shows significant circular dichroism for blue to ultraviolet light, that warrants a search for biological receptors sensitive to circular polarization. A derived synthetic structure based on four like-handed silicon srs nets exhibits a large circular polarization stop band of a width exceeding 30%. These findings offer design principles for chiral photonic devices.  相似文献   

14.
The theory describing the far-field emission from a dipole source embedded inside a chiral sculptured thin film (CSTF), based on a spectral Green function formalism, was further developed to allow for infiltration of the void regions of the CSTF by a fluid. In doing so, the extended Bruggeman homogenization formalism — which accommodates constituent particles that are small compared to wavelength but not vanishingly small — was used to estimate the relative permittivity parameters of the infiltrated CSTF. For a numerical example, we found that left circularly polarized (LCP) light was preferentially emitted through one face of the CSTF while right circularly polarized (RCP) light was preferentially emitted through the opposite face, at wavelengths within the Bragg regime. The centre wavelength for the preferential emission of LCP/RCP light was red shifted as the refractive index of the infiltrating fluid increased from unity, and this red shift was accentuated when the size of the constituent particles in our homogenization model was increased. Also, the bandwidth of the preferential LCP/RCP emission regime decreased as the refractive index of the infiltrating fluid increased from unity.  相似文献   

15.
In this paper, analysis and theoretical investigations are carried out to find the reflected and transmitted powers for a planar isotropic chiral–uniaxially anisotropic chiral interface with optical axis parallel to interface. The expressions of the reflected and transmitted powers for right-circularly polarized (RCP) and left-circularly polarized (LCP) incident waves are derived. Results of the reflected and transmitted powers for the RCP and LCP incident waves from materials with different isotropic chirality and uniaxial chirality values are presented. The effect of the uniaxial chirality on three other cases of dielectric constant combinations is also studied. The numerical results derived from the presented analytical expressions are found to be in good agreement with those obtained by computational techniques elsewhere.  相似文献   

16.
阳泽健  胡德骄  高福华  侯宜栋 《中国物理 B》2016,25(8):84201-084201
The circular dichroism(CD) signal of a two-dimensional(2D) chiral meta-surface is usually weak, where the difference between the transmitted(or reflected) right and left circular polarization is barely small. We present a general method to enhance the reflective CD spectrum, by adding a layer of reflective film behind the meta-surface. The light passes through the chiral meta-surface and propagates towards the reflector, where it is reflected back and further interacts with the chiral meta-surface. The light is reflected back and forth between these two layers, forming a Fabry–Perot type resonance,which interacts with the localized surface plasmonic resonance(LSPR) mode and greatly enhances the CD signal of the light wave leaving the meta-surface. We numerically calculate the CD enhancing effect of an L-shaped chiral meta-surface on a gold film in the visible range. Compared with the single layer meta-surface, the L-shaped chiral meta-surface has a CD maximum that is dramatically increased to 1. The analysis of reflection efficiency reveals that our design can be used to realize a reflective circular polarizer. Corresponding mode analysis shows that the huge CD originates from the hybrid mode comprised of FP mode and LSPR. Our results provide a general approach to enhancing the CD signal of a chiral meta-surface and can be used in areas like biosensing, circular polarizer, integrated photonics, etc.  相似文献   

17.
The circular dichroism(CD) signal of a molecule is usually weak,however,a strong CD signal in optical spectrum is desirable because of its wide range of applications in biosensing,chiral photo detection,and chiral catalysis.In this work,we show that a strong chiral response can be obtained in a hybridized system consisting of an artificial chiral molecule and a nanorod in the strong coupling regime.The artificial chiral molecule is composed of six quantum dots in a helix assembly,and its CD signal arises from internal Coulomb interactions between quantum dots.The CD signal of the hybridized system is highly dependent on the Coulomb interactions and the strong coupling progress through the electromagnetic interactions.We use the coupled oscillator model to analyze strong coupling phenomenon and address that the strong coupling progress can amplify the CD signal.This work provides a scenario for designing new plasmonic nanostructures with a strong chiral optical response.  相似文献   

18.
In this paper, the optical properties of the chiral metamaterial (CMM) with complementary U-shaped structure assembly have been investigated numerically in infrared frequencies. Here, we systematically study the dependence of CMM's optical properties to the structural parameters. The giant optical activity, circular dichroism (CD), and high negative refraction can be obtained by properly selecting the parameters, respectively. CMMs will also lead to many applications in photonic devices due to their strong polarization effect and CD effect.  相似文献   

19.
New modes of propagation for a single, intense beam of light have been theoretically studied in the frequency region of giant two photon absorption (GTA) to excitonic molecule (EM) states. Self-consistent solutions for left and right circularly polarized (LCP and RCP respectively) components have been obtained for the polariton dispersion equations which include the ω- and k-dependent self-energy term for exciton due to the GTA process to EM. There are two types of solutions: [I] k(LCP) = k(RCP), [II] k(LCP) ≠ k(RCP). The induced branch for the former has a half of EM mass. There are experimental observations which support the existence of such new propagation modes.  相似文献   

20.
郭娟娟  汪茂胜  黄万霞 《中国物理 B》2017,26(12):124211-124211
A three-dimensional chiral metamaterial with four-fold rotational symmetry is designed, and its optical properties are investigated by numerical simulations. The results show that this chiral metamaterial has the following features: high polarization conversion, perfect circular dichroism, and asymmetric transmission of circularly polarized light. A comparison of the results of chiral metamaterials without and with weak coupling between the constituent nanostructures enables us to confirm that the optical properties of our proposed nanostructure are closely related to the coupling between the single nanoparticles. This means that the coupling between nanoparticles can enhance the polarization conversion, circular dichroism, and asymmetric transmission. Due to the excellent optical properties, our metamaterial might have potential applications in the development of future multi-functional optical devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号