首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
The use of transient moving chemical reaction boundary (tMCRB) was investigated for the on‐line preconcentration of native amino acids in heart‐cutting 2D‐CE with multiple detection points using contactless conductivity detection. The tMCRB focusing was obtained by using ammonium formate (pH 8.56) as sample matrix and acetic acid (pH 2.3) as a BGE in the first dimension of the heart‐cutting 2D‐CE. Different experimental parameters such as the injected volume and the concentration in ammonium formate were optimized for improving the sensitivity of detection. A stacked fraction from the first dimension was selected, isolated in the capillary, and then separated in the second dimension in the presence of a chiral selector ((+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid). This on‐line tMCRB preconcentration coupled with heart‐cutting 2D‐CE was applied with success to the chiral separation of D ,L ‐phenylalanine, and D ,L ‐threonine in a mixture of 22 native amino acids. The sample mixture was diluted in 0.8 M of ammonium formate, and injected at a concentration of 2.5 μM for each enantiomer with a volume corresponding to 10% of the total capillary volume. An LOD (S/N=3) of 2 μM was determined for L ‐threonine.  相似文献   

2.
In this study, a new CE method, employing a binary system of trimethyl‐β‐CD (TM‐β‐CD) and a chiral amino acid ester‐based ionic liquid (AAIL), was developed for the chiral separation of seven 2‐arylpropionic acid nonsteroidal anti‐inflammatory drugs (NSAIDs). In particular, the enantioseparation of ibuprofen, ketoprofen, carprofen, indoprofen, flurbiprofen, naproxen, and fenoprofen was improved significantly by supporting the BGE with the chiral AAIL l ‐alanine tert butyl ester lactate (l ‐AlaC4Lac). Parameters, such as concentrations of TM‐β‐CD and l ‐AlaC4Lac, and buffer pH, were systematically examined in order to optimize the chiral separation of each NSAID. It was observed that the addition of the AAIL into the BGE improved both resolution and efficiency significantly. After optimization of separation conditions, baseline separation (Rs>1.5) of five of the analytes was achieved in less than 11 min, while the resolution of ibuprofen and flurbiprofen was approximately 1.2. The optimized enantioseparation conditions for all analytes involve a BGE of 5 mM sodium acetate/acetic acid (pH 5.0), an applied voltage of 30 kV, and a temperature of 20°C. In addition, the results obtained by computing the %‐RSD values of the EOF and the two enantiomer peaks, demonstrated excellent run‐to‐run, batch‐to‐batch, and day‐to‐day reproducibilities.  相似文献   

3.
One CE method was established for detecting deferoxamine (DFO) and deferiprone (DFR) in plasma. For β‐thalassemia patients, DFO and DFR are major medicines to treat the iron overload caused by blood transfusion. Field‐amplified sample injection combined with sweeping was used for sensitivity enhancement in CE. This method was performed on an uncoated fused‐silica capillary. After liquid–liquid extraction, the plasma samples were electrokinetically injected into capillary at +10 kV for 180 s. The phosphate buffer (100 mM) containing 50 mM triethanolamine was used as the BGE (pH 6.6). Separation buffer was phosphate buffer (100 mM, pH 3.0) containing 150 mM SDS. This method showed good linearity (r ≥ 0.9960). Precision and accuracy were evaluated by the results of RSD and relative error of intrabatch and interbatch analyses, and all of the absolute values were less than 6.12%. The LODs (S/N = 3) were 200 ng/mL for DFO, and 25 ng/mL for DFR. The LOQ (S/N = 10) of DFO and DFR were 600 and 75 ng/mL, respectively. This method was applied for clinical applications of five β‐thalassemia patients.  相似文献   

4.
A method for the determination of tartaric acid enantiomers using CE with contactless conductivity detection has been developed. Cu(II) as a central metal ion together with l ‐hydroxyproline were used as a chiral selector, the BGE was composed of 7 mM CuCl2, 14 mM trans‐4‐hydroxy‐l ‐proline, and 100 mM ε‐aminocaproic acid; the pH was adjusted to 5 by hydrochloric acid. Separation with a resolution of 1.9 was achieved in 9 min in a polyacrylamide‐coated capillary to suppress the EOF. Various counterions of the BGE were studied, and migration order reversal was achieved when switching from ε‐aminocaproic acid to l ‐histidine. With detection limits of about 20 μM, the method was applied to the analysis of wine and grape samples; only l ‐tartaric acid was found.  相似文献   

5.
α1‐Acid glycoprotein (AGP) was previously shown to be a marker candidate of disease progression and prognosis of patients with malignancies by analysis of its glycoforms via lectins. Herein, affinity capillary electrophoresis of fluorescein‐labeled AGP using lectins with the aid of laser‐induced fluorescence detection was developed for quantitative evaluation of the fractional ratios of concanavalin A‐reactive or Aleuria aurantia lectin‐reactive AGP. Labeled AGP was applied at the anodic end of a fused‐silica capillary (50 μm id, 360 μm od, 27 cm long) coated with linear polyacryloyl‐β‐alanyl‐β‐alanine, and electrophoresis was carried out for about 10 min in 60 mM 3‐morpholinopropane‐1‐sulfonic acid‐NaOH buffer (pH 7.35). Addition of the lectins to the anode buffer resulted in the separation of lectin‐reactive glycoform peaks from lectin‐non‐reactive glycoform peaks. Quantification of the peak area of each group revealed that the percent of lectin‐reactive AGP is independent of a labeling ratio ranging from 0.4 to 1.5 mol fluorescein/mol AGP, i.e. the standard deviation of 0.5% for an average of 59.9% (n=3). In combination with a facile procedure for micro‐purification of AGP from serum, the present procedure, marking the reactivity of AGP with lectins, should be useful in determining the prognosis for a large number of patients with malignancies.  相似文献   

6.
In this article, an approach has been developed for the analysis of some small peptides with similar pI values by CE‐ESI‐MS based on the online concentration strategy of dynamic pH junction. The factors affected on the separation, detection and online enrichment, such as BGE, injection pressure, sheath flow liquid and separation voltage have been investigated in detail. Under the optimum conditions, i.e. using 0.5 mol/L formic acid (pH 2.15) as the BGE, preparing the sample in 50 mM ammonium acetate solution (pH 7.5), 50 mbar of injection pressure for 300 s, using 7.5 mM of acetic acid in methanol–water (80% v/v) solution as the sheath flow liquid and 20 kV as the separation voltage, four peptides with similar pI values, such as L ‐Ala‐L ‐Ala (pI=5.57), L ‐Leu‐D ‐Leu (pI=5.52), Gly‐D ‐Phe (pI=5.52) and Gly‐Gly‐L ‐Leu (pI=5.52) achieved baseline separation within 18.3 min with detection limits in the range of 0.2–2.0 nmol/L. RSDs of peak migration time and peak area were in the range of 1.45–3.57 and 4.93–6.32%, respectively. This method has been applied to the analysis of the four peptides in the spiked urine sample with satisfactory results.  相似文献   

7.
A novel method was developed for quantifying the levels of γ‐aminobutyric acid (GABA) in the heads of houseflies (Musca domestica) and diamondback moths (Plutella xylostella (L.)), using capillary electrophoresis with laser‐induced fluorescence detection (CE‐LIF). The GABA in sample was derivatized with 4‐chloro‐7‐nitro‐2,1,3‐benzoxadiazole (NBD‐Cl) prior to CE‐LIF analysis. In total, 32 mmol/L borate buffer, at pH 9.2 and containing 5.3 mmol/L β‐cyclodextrin (β‐CD) and 10.4 mmol/L sodium dodecyl sulfate (SDS), was determined to be the optimum CE background electrolyte (BGE) for GABA analysis. The detection limit of GABA was 0.016 μmol/L. The relative standard deviations (RSDs) of the migration time and peak area of GABA were 1.78 and 4.93%, respectively. The average recoveries of 0.97, 3.88, and 5.83 μmol/L of GABA, each added to the head sample of housefly, ranged from 88.9 to 110.5%. This method is simple and applicable to GABA assays of the heads of insects. With this newly developed CE‐LIF method, the amounts of GABA in the heads of houseflies (M. domestica) and diamondback moths (P. xylostella (L.)) were measured. The results are relevant to the understandings of some insecticides and insecticide‐resistance mechanisms in pests.  相似文献   

8.
An online dynamic pH junction preconcentration method was developed for quantification of 5‐aminolevulinic acid (ALA) by CE with the separation time less than 6 min. The optimal dynamic pH junction of ALA was carried out between pH 9.3 borate buffer (BGE, 40 mM) and pH 2.5 phosphate buffer (sample matrix, 40 mM) when 4.1 cm of sample plug was hydrodynamically injected into an uncoated fused‐silica capillary (48.5 cm in length, id of 50 μm). If a 24 kV separation voltage was applied, the calibration curve of ALA peak area (200 nm) showed good linearity (R2 = 0.9991) ranging from 0.01 to 6.5 mg/mL. The reproducibility of this system was excellent with RSDs (n = 10) of 2.5% for peak area response and 0.6% for migration time at ALA concentration of 0.5 mg/mL. The LOD was evaluated as 1.0 μg/mL (S/N > 3). Compared to conventional CE procedure, the sensitivity was successfully improved over 50‐fold. The analytical results of pharmaceutical formulations show a good agreement with those by HPLC (r = 0.94).  相似文献   

9.
This work documents the influence of the position of single carboxymethyl group on the β‐cyclodextrin skeleton on the enantioselectivity. These synthesized monosubstituted carboxymethyl cyclodextrin (CD) derivatives, native β‐cyclodextrin, and commercially available carboxymethyl‐β‐cyclodextrin with degree of substitution approximately 3 were used as additives into the BGE consisting of phosphate buffer at 20 mmol/L concentration, pH 2.5, and several biologically significant low‐molecular‐mass chiral compounds were enantioseparated by CE. The results indicate that different substituent location on β‐cyclodextrin skeleton has a significant influence on the enantioseparation of the investigated enantiomers. The enantioselectivity of 2IO‐regioisomer was better than with native β‐cyclodextrin. Comparable results to native β‐cyclodextrin were obtained for 6IO‐ regioisomer and the enantioselectivity of 3IO‐regioisomer was even worse than with native β‐cyclodextrin. Commercially available derivative of CD provides better resolutions than the monosubstituted carboxymethyl CD derivatives for most of the investigated analytes.  相似文献   

10.
A novel, simple and sensitive method for the enantioseparation and determination of DL ‐tetrahydropalmatine (DL ‐THP) was developed using ACE in combination with partial filling technique and field‐amplified sample injection. A chiral selector, i.e. BSA, was used for the enantioseparation of DL ‐THP in ACE. Effects of BSA concentration, pH and separation voltage on the effectiveness of the enantiomer separation were evaluated. In an optimal condition, D ‐ and L ‐THP were completely enantio‐separated in less than 9 min by partially filling an electrophoretic capillary with 50 μmol/L BSA (50 mbar, 100 s) and carrying out an electrophoresis with 20 mmol/L phosphate buffer (pH 7.4) at 15 kV. The sensitivity was further improved by making use of field‐amplified sample injection to lower the LOD (defined as S/N=3) down to 6 ng/mL. Real samples were also tested and promising results for the determination of DL ‐THP enantiomers were obtained.  相似文献   

11.
An approach that allows direct analysis of the ratio of S‐adenosylmethionine (SAM) and S‐adenosylhomocysteine (SAH) by using CE is presented. The analytes were extracted on phenylboronic acid phase and eluted with 100 mmol/L HCl. CE separation of the analytes took place in the transient isotachophoresis mode with addition of NaCl and meglumine to the samples. The sensitivity (S/N = 3) and quantification limit (S/N = 10) of the method were 0.07 and 0.2 μmol/L, respectively, using a silica capillary with 50 μm internal diameter and 30.5 cm total length. The BGE was 0.02 mol/L Tris with 1 mol/L HCOOH (pH 2.2), and the separation voltage was 15–17 kV. Accuracy of SAM and SAH analysis in urine was 96 and 105%, respectively; interday precision for the SAM/SAH ratio was within 6%. The theoretical plate number exceeded a million. Total analysis time was 8.5 min.  相似文献   

12.
A capillary electrophoretic (CE) method coupled with the use of 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (1E‐3MI‐TFB) ionic liquid as background electrolyte (BGE) has been developed for the simultaneous separation of nine tricyclic antidepressants, viz. amitriptyline (Ami), clomipramine (Clo), desipramine (Des), fluphenazine (Flu), imipramine (Imi), nortriptyline (Nor), promazine (Pro), thioridazine (Thi) and trimipramine (Tri). Resolution of TCAs with similar molecular structures and pKa values was accomplished by minute manipulation of the electrophoretic velocities of TCAs via reversed electroosmotic flow (EOF) generated by adsorption of 1E‐3MI cations onto the capillary wall. The optimal separation was obtained with a 50 mM 1E‐3MI‐TFB as the sole BGE at pH 3. Symmetric peaks with efficiencies up to 2.4 × 105 plates/m were achieved. RSD values on migration times and peak areas were in the ranges of 0.63–0.95% and 3.41–6.34% (n = 4), respectively. The role of different alkyl groups on the imidazolium cations was also investigated.  相似文献   

13.
A new kind of flow gating interface (FGI) has been designed for online connection of CE with flow‐through analytical techniques. The sample is injected into the separation capillary from a space from which the BGE was forced out by compressed air. A drop of sample solution with a volume of 75 nL is formed between the outlet of the delivery capillary supplying the solution from the flow‐through apparatus and the entrance to the CE capillary; the sample is hydrodynamically injected into the CE capillary from this drop. The sample is not mixed with the surrounding BGE solution during injection. The functioning of the proposed FGI is fully automated and the individual steps of the injection process are controlled by a computer. The injection sequence lasts several seconds and thus permits performance of rapid sequential analyses of the collected sample. FGI was tested for the separation of equimolar 50 μM mixture of the inorganic cations K+, Ba2+, Na+, Mg2+, and Li+ in 50 mM acetic acid/20 mM Tris (pH 4.5) as BGE. The obtained RSD values for the migration times varied in the range 0.7–1.0% and the values for the peak area were 0.7–1.4%; RSD were determined for ten repeated measurements.  相似文献   

14.
The paper reports the results of a study carried out to evaluate the use of three 1‐alkyl‐3‐methylimidazolium‐based ionic liquids as non‐covalent coating agents for bare fused‐silica capillaries and additives of the electrolyte solutions (BGE) for CE of basic proteins in the co‐EOF separation mode. The three ionic liquids are differentiated from each other by the length of the alkyl group on the imidazolium cation, consisting of either an ethyl, butyl or octyl substituent, whereas tetrafluoroborate is the common anionic component of the ionic liquids. Coating the capillary with the ionic liquid resulted in improved peak shape and protein separation, while the EOF was maintained cathodic. This indicates that each ionic liquid is effective at masking the protein interaction sites on the inner surface of the capillary, also when its adsorption onto the capillary wall has not completely neutralized all the negative charges arising from the ionization of the silanol groups and the ionic liquid is not incorporated into the BGE employed for separation. Using the coated capillaries with BGE containing the ionic liquid employed for the coating, at concentration low enough to maintaining the EOF cathodic, both peak shape and protein separation varied to different extents, based on the particular ionic liquid used and its concentration. Fast and efficient separation of the model basic protein mixture in co‐electroosmotic CE is obtained with the 1‐butyl‐3‐methylimidazolium tetrafluoroborate coated capillary and 100 mM acetate buffer (pH 4.0) containing 4.4 mM 1‐butyl‐3‐methylimidazolium tetrafluoroborate as the BGE.  相似文献   

15.
CE coupled with amperometric detection method was developed using ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMImBF4) as additive for the simultaneous detection of clenbuterol (CLB), terbutaline (TER), and ractopamine (RAC) in feed. The effects of detection potential, concentration of EMImBF4, pH, and concentration of the running buffer, separation voltage as well as injection time on the separation and detection of these three β‐agonists were investigated in detail. Under the optimum conditions: the detection potential at 1.05 V, 50 mmol/L Tris‐HAc at pH 8.0 with 0.6% (v/v) EMImBF4, electrokinetic injection 6 s at 16 kV and separation voltage at 16 kV, a baseline separation for these three analytes could be achieved within 11 min. Introduction of EMImBF4 into the running buffer resulted in significant improvement in separation selectivity and enhancement in peak currents for those β‐agonists, especially for TER and RAC, which could not be separated in the running buffer without additive. The method exhibited wide linear range with LOD (S/N = 3) of 2, 1, and 2 nmol/L for CLB, TER, and RAC, respectively. The precision was determined in both intraday (n = 5) and interday (n = 3) assays, and the RSDs for both migration time and peak current were less than 6%. The proposed method was also applied to analyze β‐agonists in feed sample.  相似文献   

16.
In this work, a new physically adsorbed coating for CE is presented. This coating is based on a poly(N,N‐dimethylacrylamide‐co‐4‐(ethyl)‐morpholine methacrylamide) (DMA/MAEM) copolymer synthesized in our laboratory. It is demonstrated that the direction and magnitude of the EOF in CE can be modulated by varying the composition of the DMA/MAEM copolymer and the type and pH of the BGE. Moreover, the DMA/MAEM coating provides %RSDn = 5 values for migration times lower than 0.9% for the same capillary and day, whereas the %RSDn = 25 obtained for the interday assay was lower than 2.9%. The stability of the coating procedure is also tested between capillaries obtaining %RSDn = 15 values lower than 2.9%, demonstrating that this physically adsorbed copolymer gives rise to a stable and reproducible coating in CE. Finally, the usefulness of this new cationic copolymer as CE coating is demonstrated through different applications. Namely, it is demonstrated that the CE separation of basic proteins, nucleotides and organic acids is achieved in a fast and easy way by using the DMA/MAEM coated capillary. The use of fused bare silica capillaries did not allow the separation of these compounds under the same analytical conditions. These results demonstrate that this type of coating in CE provides the option of using BGEs that are useless when utilized together with bare silica capillaries making wider the application and possibilities of this analytical technique.  相似文献   

17.
A practical chiral CE method, using sulfated‐β‐CD as chiral selector, was developed for the enantioseparation of glycopyrrolate containing two chiral centers. Several parameters affecting the separation were studied, including the nature and concentration of the chiral selectors, BGE pH, buffer type and concentration, separation voltage, and temperature. The separation was carried out in an uncoated fused‐silica capillary of (effective length 40 cm) × 50 μm id with a separation voltage of 20 kV using 30 mM sodium phosphate buffer (pH 7.0, adjusted with 1 M sodium hydroxide) containing 2.0% w/v sulfated‐β‐CD at 25°C. Finally, the method for determining the enantiomeric impurities of RS‐glycopyrrolate was proposed. The method was further validated with respect to its specificity, linearity range, accuracy and precision, LODs, and quantification in the expected range of occurrence for the isomeric impurities (0.1%).  相似文献   

18.
Enantiomers of Tröger's base were separated by capillary electrophoresis using 2IO‐, 3IO‐, and 6IO‐carboxymethyl‐α‐, β‐, and γ‐cyclodextrin and native α‐, β‐, and γ‐cyclodextrin as chiral additives at 0–12 mmol/L for β‐cyclodextrin and its derivatives and 0–50 mmol/L for α‐ and γ‐cyclodextrins and their derivatives in a background electrolyte composed of sodium phosphate buffer at 20 mmol/L concentration and pH 2.5. Apparent stability constants of all cyclodextrin–Tröger's base complexes were calculated based on capillary electrophoresis data. The obtained results showed that the position of the carboxymethyl group as well as the cavity size of the individual cyclodextrin significantly influences the apparent stability constants of cyclodextrin–Tröger's base complexes.  相似文献   

19.
Herein, we report a new CE method to measure adenine nucleotides adenosine 5′‐triphosphate, adenosine 5′‐diphosphate, and adenosine 5′‐monophosphate in red blood cells. For this purpose, 20 mmol/L sodium acetate buffer at pH 3.80 was used as running electrolyte, and the separation was performed by the simultaneous application of a CE voltage of 25 kV and an overimposed pressure of 0.2 psi from inlet to outlet. A rapid separation of these analytes in less than 1.5 min was obtained with a good reproducibility for intra‐ and inter‐assay (CV<4 and 8%, respectively) and an excellent analytical recovery (from 98.3 to 99%). The applicability of our method was proved by measuring adenine nucleotides in red blood cells.  相似文献   

20.
The enantiomers of the anions of five α‐hydroxy acids, namely lactic acid, α‐hydroxybutyric acid, 2‐hydroxycaproic acid, 2‐hydroxyoctanoic acid and 2‐hydroxydecanoic acid, as well as the two α‐amino acids aspartic acid and glutamic acid, were baseline separated and detected by CE with contactless conductivity detection. Vancomycin was employed as chiral selector and could be used with conductivity detection without having to resort to a partial filling protocol as needed when this reagent is used with UV absorbance measurements. The procedure was successfully applied to the determination of the lactic acid enantiomers in samples of milk and yogurt. Linearity was achieved in the concentration range of 10–500 μmol/L with good correlation coefficients (0.9993 and 0.9990 for L ‐ and D ‐lactic acid, respectively). The LODs (3 S/N) for L ‐ and D ‐lactic acid were determined as 2.8 and 2.4 μmol/L, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号