首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Complex formation and liquid-liquid extraction were studied in systems containing indium(III), 4-(2-pyridylazo)resorcinol (PAR), tetrazolium salt (TZS), water and chloroform. Two different TZS were used: 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT). The optimum conditions for extraction of In(III) as a ternary complex, (TT+)[In(PAR)2] or (MTT+)[In(PAR)2], were found: pH, extraction time, concentration of PAR and concentration of TZS. The constants of extraction (Kex), constants of association (β), constants of distribution (KD) and recovery factors (R%) were determined. The apparent molar absorptivities in chloroform were calculated to be ɛ′520=6.6×104 L mol−1 cm−1 and ɛ′515=7.1×104 L mol−1 cm−1 for the systems with TTC (I) and MTT (II), respectively. Beer’s law was obeyed for In(III) concentrations up to 3.4 μg mL−1 in both the cases. The limits of detection (LOD=0.07 μg mL−1 I and LOD=0.12 μg mL−1 II), limits of quantification (LOQ=0.24 μg mL−1 I and LOQ=0.41 μg mL−1 II) and Sandell’s sensitivities (SS) were estimated as well.   相似文献   

2.
Dinuclear copper(II) complexes with acyldihydrazones of 2-hydroxy-5-nitroacetophenone (H4L) of the composition Cu2(Py)xmEtOH were synthesized and characterized. In these complexes, the coordination polyhedra of the copper atoms are linked to each other by a polymethylene chain of different lengths, from one to five monomer units. The structure of the [Cu2L·4Mrf] complex (Mrf is morpholine) based on acyldihydrazone of malonic acid was established by X-ray diffraction. The copper(II) atoms in this complex are [4+1]-coordinated and are spaced by 6.94 Å. At room temperature, the signal in the ESR spectra of solutions of the complexes based on acyldihydrazones of malonic, succinic, glutaric, and adipic acids has a seven-line hyperfine structure with the constant of (35.3–38.8)·10−4 cm−1 (g = 2.109–2.112) due to exchange interactions between unpaired electrons and two equivalent copper nuclei. An increase in the length of the polymethylene chain to five monomer units hinders exchange interactions, and the ESR signal of the complex based on acyldihydrazone of pimelic acid has a four-line hyperfine structure with a Cu = 72.7·10−4 cm−1 typical of mononuclear copper(II) complexes. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 229–234, February, 2007.  相似文献   

3.
A new trinuclear cyano-bridged CuII–MoIV–CuII compound has been prepared, characterized spectroscopically (UV–Vis and IR) and its structure determined by X-ray crystallography. The title complex 1 exhibits an antiferromagnetic exchange interaction between copper(II) ions mediated by [Mo(CN)8]4? diamagnetic units.  相似文献   

4.
The product composition and the principles of photochemical transformations of tetrahexylammonium tetrachlorocuprate [(RH)4N+]2[CuIICl4]2− (RH = C6H13) in 2-chlorobutane at 77 K have been found out by ESR spectroscopy. It has been shown that the photolysis of [(RH)4N+]2 [CuIICl4]2− results in the formation of alkyl radicals (R), presumably, anions [CuICl3]2− and organic copper(II) compounds {CuIIR}. A reduction in the quantum yield of primary photolysis products during the reaction, nonequivalence of the quantum yield of the buildup of paramagnetic photolysis products to that of [CuIICl4]2− consumption, and a decrease in the total number of paramagnetic particles in the system during the photolysis have been revealed. A photolysis mechanism involving both photochemical and thermal processes is proposed.  相似文献   

5.
1,3-Diaminopropan-2-ol N,N′-bis(3-formyl-5-tert-butylsalicylidene) (H3L) and the binuclear copper(II) complex based on H3L, [Cu2L(CH3COO)] (I), are synthesized. The compounds are studied by IR and 1H NMR spectroscopies, magnetochemistry, and X-ray diffraction analysis. Compared to the copper(II) complexes with 1,3-diaminopropan-2-ol N,N′-bis(salicylidene), complex I is characterized by a substantial change in the structure resulting in weakening of the antiferromagnetic exchange interaction.  相似文献   

6.
Binuclear copper(II) complexes with 5-bromo-2-hydroxyacetophenone acyldihydrazones (H4L) with the composition [Cu2nPy] where the coordination polyhedra are linked by polymethylene chains with different lengths (from one to five units) have been synthesized and studied. The ESR spectrum of a polycrystalline sample of a complex based on malonyldihydrazone contains a major signal (g = 2.11) together with a weak signal corresponding to the forbidden transition (ΔM S = 2, g = 4.18). At room temperature, ESR spectra of solutions of complexes of acyldihydrazones based on malonic, succinic, glutaric, and adipic acids contain seven HFS lines from two equivalent copper nuclei. These lines result from weak spin-spin exchange interaction between two unpaired electrons with the constant (36–38)·10−4 cm−1. An increase in the polymethylene chain length to five units prevents the exchange interactions, and the ESR spectrum of a complex of the acyldihydrazone based on pimelic acid contains a signal of four HFS lines (a Cu = 69.5·10−4 cm−1), which is common to the monomeric copper(II) compounds. In the parallel orientation, the ESR spectrum of a frozen solution of the complex of malonyldihydrazone contained the superposition of signals due to fine and hyperfine structures with similar constants (D = 0.0074 cm−1, A = 0.0070 cm−1, g = 2.089, g = 2.053). __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1752–1757, August, 2005.  相似文献   

7.
Two copper(I) complexes [Cu(Cin2bda)2]ClO4 (I) and [Cu(Ncin2bda)2]ClO4 (II) have been prepared by the reaction of the ligands N2,N2′-bis(3-phenylallylidene)biphenyl-2,2′-diamine (L1) and N2,N2′-bis[3-(2-nitrophenyl)allylidene]biphenyl-2,2′-diamine (L2) and copper(I) salt. These compounds were characterized by CHN analyses, 1H NMR, IR, and UV-Vis spectroscopy. The C=N stretching frequency in the copper(I) complexes shows a shift to a lower frequency relative to the free ligand due to the coordination of the nitrogen atoms. The crystal and molecular structure of II was determined by X-ray single-crystal crystallography. The coordination polyhedron about the copper(I) center in the complex is best described as a distorted tetrahedron. A quasireversible redox behavior was observed for complexes I and II. The article is published in the original.  相似文献   

8.
New trinuclear carbonato-bridged copper(II) complexes, [Cu3(Bipy)63-CO3)](CF3SO3)4(H2O)0.5 (I) and [Cu3(Phen)63-CO3)](CF3SO3)4(H2O)0.5 (II) (Bipy = 2,2′-bipyridine and Phen = 1,10-phenanthroline), have been synthesized and characterized by X-ray crystallography. In the trinuclear units, a carbonate anion triply bridges three Cu atoms in a μ3111-CO3 mode. The environment around each copper(II) center is five-coordinate ranging between intermediate to distorted square-pyramidal geometry. In the crystal packing, the molecule of I is involved in a variety of intra/intermolecular non-covalent interactions such as intra/intermolecular stacking and CH···π interactions between the pyridine groups of the chelated ligand, leading to a one-dimensional arrangement of I. In complex II, the molecule is involved in both intra- and intermolecular Phen-Phen π-stacking, forming a three-dimensional network. The spectroscopic (IR, diffuse reflectance, and EPR spectra) properties and the preliminary results of magnetic measurements of both complexes are investigated and compared to other closely related trinuclear copper(II) complexes.  相似文献   

9.
Four novel organic–inorganic hybrid compounds [Cu5 I(4,4′-bpy)3(2,2′-bpy)4][BW12O40] · H2O (1), [Ni0.5(2,2′-bpy)1.25][Ni(2,2′-bpy)3][Ni(2,2′-bpy)2(H2O)(SiW11VIWVO40)] · 0.5H2O (2), [H2bpy]2[Zn(2,2′-bpy)3]2[Si2W18O62] · 1.5H2O (3) and [CuII(2,2′-bpy)2]2[SiW12O40] · 2H2O (4) (2,2′-bpy = 2,2′-bipyridine, 4,4′-bpy = 4,4′-bipyridine) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR spectroscopy, thermal gravimetric analysis, electrochemical measurements and single-crystal X-ray diffraction. Compound (1) is a novel [BW12O40]5− polyoxoanion bisupported by copper(I) coordination cations with mixed 2,2′-bpy and 4,4′-bpy ligands. Compound (2) is constructed from the [SiW11VIWVO40]5− polyoxoanions supported by [Ni(2,2′–bpy)2]2+. Compound (3) is composed of a novel [Si2W18O62]8− cluster and [Zn(2,2′–bpy)3]2+ complexes, which held together into a three-dimensional (3D) supramolecular network through hydrogen-bonding interactions. Compound (4) shows a 2D layer framework constructed from a bisupporting Keggin polyoxoanion cluster and [Cu(2,2′–bpy)2]2+ coordination polymer fragments, resulting in 3D networks via supramolecular interactions. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Two new linear CuII complexes [Cu(L1)2] (I) (HL1 = (E)-3,5-dichloro-2-hydroxy benzaldehyde O-methyl oxime) and [Cu(L2)2] (II) (HL2 = (E)-3,5-dichloro-2-hydroxy benzaldehyde O-ethyl oxime) are synthesized and characterized by elemental analysis, IR, UV-Vis, and X-ray diffraction methods. X-ray crystallographic analyses indicate that complexes I and II have a similar structure consisting of one CuII ion and two L units. In the complexes, the CuII ion lying on an inversion centre is four-coordinated in a trans-CuN2O2 square planar geometry by two phenolate O and two oxime N atoms from two symmetry-related N,O-bidentate oxime-type ligands. However, the crystal structure of the two complexes is different: complex I forms an infinite three-dimensional supramolecular network structure through intermolecular hydrogen bonding and π...π interaction, while complex II forms an infinite one-dimensional supramolecular structure through intermolecular hydrogen bonds.  相似文献   

11.
The reaction of [M(L)]Cl2 · 2H2O (M = Ni2+ and Cu2+, L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with 1,1-cyclobutanedicarboxylic acid (H2-cbdc) generates 1D and 2D hydrogen-bonded infinite chains [Ni(L)(H-cbdc)2] (1) and [Cu(L)(H-cbdc)2] (2). (H-cbdc = cyclobutane-1-carboxylic acid-1-carboxylate). These complexes have been characterized by X-ray crystallography, spectroscopy, and cyclic voltammetry. The crystal structure of 1 shows a distorted octahedral coordination geometry around the nickel(II) ion, with four secondary amines and two oxygen atoms of the H-cbdc ligand at the trans position. In 2, the coordination environment around the central copper(II) ion shows a Jahn–Teller distorted octahedron with four Cu–N bonds and two long Cu–O distances. The cyclic voltammogram of the complexes undergoes two one-electron waves corresponding to MII/MIII and MII/MI processes. The electronic spectra and electrochemical behavior of the complexes are significantly affected by the nature of the axial H-cbdc ligand.  相似文献   

12.
Four metal complexes of N,N′-bis(salicyl)-2,6-pyridine-dicarbohydrazide ligand (H6L), [CoII(H4L)(H2O)2]·2DMF (1), [ZnII(H4L)(H2O)2]·2DMF (2), [CdII(H4L)(Py)2]·DMF·Py (3), and [CoIICo2III(H4L)4(H2O)4]·DMF·H2O (4), were synthesized and characterized by elemental analysis, IR, and single-crystal X-ray diffraction analysis. Structural studies revealed that complexes 13 present discrete mononuclear structures and complex 4 displays a centrosymmetric mixed-valence trinuclear structure. All four complexes are further extended into interesting two- or three-dimensional supramolecular frameworks. The luminescent properties of 2 and 3 were studied, which show emissions with maxima at 485 nm upon excitation at 396 nm for 2 and 476 nm upon excitation at 397 nm for 3, respectively.  相似文献   

13.
Three novel complex salts containing the cation trans-[Rh(β-Pic)4Cl2]+ with the anions Cl (I), ReO4 (II), and ClO4 (III) were obtained and characterized by elemental analysis, X-ray diffraction, NMR spectroscopy, and IR spectroscopy. The complex trans-[Rh(β-Pic)4Cl2]ReO4 crystallizes from DMF as a solvate in which solvent molecules fill the channels formed by the cations and anions. The thermal properties of complexes I, II, and II · DMF were examined by DTA. Final and some intermediate products of the thermolysis were isolated and characterized by physicochemical methods.  相似文献   

14.
Two new inorganic–organic hybrid compounds constructed from different polyoxometalates (POMs) and copper multinuclear clusters, [Cu(bmte)(H2Mo8O26)0.5]·3H2O (1) and [Cu3(bmte)3(HSiMo12O40)]·H2O (2) (bmte = 1,2-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)ethane), have been synthesized under hydrothermal conditions with a flexible double tetrazole-based thioether and characterized by IR, TG and single-crystal X-ray diffraction analyses. In compound 1, two bmte ligands chelate two CuI ions with three N atoms to form a binuclear nano-scale subunit [Cu2(bmte)2]2+, then the binuclear CuI subunits are connected by [Mo8O26]4− anions to build a one dimensional (1D) chain. In compound 2, a trinuclear nano-scale subunit [Cu3(bmte)3]3+ constructed from three CuI ions and three bmte ligands has been obtained, and the adjacent trinuclear subunits are linked by [SiMo12O40]4− anions to form a “zipper” 1D chain. The adjacent chains of the title compounds are ultimately extended into 2D layers by hydrogen bonds between bmte and POMs. The structural difference of the two compounds indicates that the POMs play an important structure-directed role on the final networks. In addition, the electrochemical behavior of 2-modified carbon paste electrode (2-CPE) and its electrocatalytic reduction of nitrite have been discussed.  相似文献   

15.
A novel heterospin one-dimensional (1-D) chain complex containing both Cu(II) and nitroxide radical ligands, {[Cu(tcph)(H2O)4][Cu(tcph)(NIT3Py)2]·2H2O} n (1) (H2tcph = tetrachloro-phthalic acid, NIT3Py = 2-(3′-pyridyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), has been synthesized and structurally characterized. The structure consists of neutral chains of copper(II) ions bridged by tcph and coordinated alternatively by nitroxide radicals as spin branches and solvated water as co-ligand. The magnetic data were fitted using an approximate theoretical model based on population analysis to obtain the coupling parameter values of J Cu2-Rad = 22.4 cm−1 and JCu1-Cu2 = −2.4 cm−1, indicating the intramolecular ferromagnetic interaction between Cu(II) and NIT3Py and weak antiferromagnetic interaction between Cu1 and Cu2 linked by tcph.  相似文献   

16.
Heterometallic compounds BaCr2(OH)(Ac)(Nta)2 · 4H2O (I) and [Fe(L)3][Cr2(OH)(Ac)(Nta)2] · nH2O (L is Bipy (II) and Phen (III); Bipy is, αα′-bipyridine, Phen is o,o′-phenanthroline, Ac is acetate ion, Nta is nitrilotriacetate ion; n = 8 (II) and 6.25 (III)) are synthesized. According to the X-ray diffraction data, compounds II and III have ionic structures built of the isolated complex cations [Fe(L)3]2+, binuclear complex anions [Cr2(OH)(Ac)(Nta)2]2−, and crystallization water molecules. The magnetic properties of compounds II and III in the interval from 2 to 300 K confirm assumptions on the diamagnetic character of [Fe(L)3]2+ and indicate the antiferromagnetic interaction between the chromium atoms in the dimeric fragment [Cr2(OH)(Ac)(Nta)2]2−.  相似文献   

17.
Three new crystalline complexes are synthesized: [K(18-crown-6)]+ · An, where An = [FeCl4]?(I), [FeBr2Cl2]? (II), and [FeBr4]? (III). The crystals of compounds I–III are cubic and isomorphic, space group Fd $ \bar 3 Three new crystalline complexes are synthesized: [K(18-crown-6)]+ · An, where An = [FeCl4](I), [FeBr2Cl2] (II), and [FeBr4] (III). The crystals of compounds I–III are cubic and isomorphic, space group Fd (Z = 16): a = 20.770(2) ? for I, 20.844(3) ? for II, and 20.878(4) ? for III. Structures I–III are solved by a direct method and refined by the full-matrix least-squares method in the anisotropic approximation to R = 0.047 (I), 0.059 (II), and 0.098 (III) for all 680 (I), 684 (II), and 686 (III) independent reflections. In two tetrahedral anions [Fe(1)X4] and [Fe(2)X4] in structures I–III, all halogen atoms (X = Cl and Br) are randomly disordered over three close positions relative to the crystallographic axes 3. Structures I–III contain the [K(18-crown-6)]+ host-quest complex cation. The K+ cation (CN = 8) resides in the cavity of the 18-crown-6 ligand and coordinated by its six O atoms and two disordered halogen X atoms. The coordination polyhedron of the K+ cation in complexes I–III is a distorted hexagonal bipyramid. Original Russian Text ? A.N. Chekhlov, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 9, pp. 1566–1570.  相似文献   

18.
Cu(ClO4)2·6H2O was shown to react with 2,2′-[propane-1,3-diylbis(thio-2-phenylnemethylidene]-bis(3-pyridylamine) (I) or (5Z)-2-ethoxycarbonylmethyl-(2-pyridylmethylidene)-3,5-dihydro-4H-imidazol-4-one (II) in the presence of CH3CN with the reduction of copper(II) to copper(I) and the formation of the tetrahedral complex CuI(CH3CN)4ClO4 (III). In the course of the reaction the organic ligands I and II were oxidized to the corresponding sulfoxides.  相似文献   

19.
The alkylation of ethylenediamine with allyl bromide in the presence of a fourfold (with respect to ethylenediamine) molar amount of NaHCO3 in acetone with an ethanol admixture (15: 1) affords LBr2 · 2H2O (I), where L2+ is the N,N,N,N′,N′,N′-hexaallylethylenediaminium cation. Single crystals of complexes L[CuII(Br0.45Cl3.55)] (II), L[Cu4I(Br4.55Cl1.45)] (III), and L[Cu4IBr6] (IV) are prepared by ac electrochemical synthesis from an ethanolic solution of LBr2 · 2H2O, CuCl2 · 2H2O (or CuBr2) at copper wire electrodes. The crystal structures of compounds I–IV are determined by X-ray diffraction analysis. The crystals of complex I are monoclinic: space group P21/n, a = 8.544(3), b = 10.404(3), c = 13.350(4) ?, β = 97.29(3)°, V = 1177.2(6) ?3, Z = 2. The bromine anions in compound I are bonded to the L2+ cations and water molecules through hydrogen contacts (E)H…Br (E = O, C) of 2.57(3)–2.86(3) ?. The crystals of compounds II–IV are triclinic: space group P . For II: a = 8.762(4), b = 9.163(4), c = 16.500(6) ?, α = 95.62(4)°, β = 96.39(4)°, γ = 111.46(4)°, V = 1211.4(9) ?3, Z = 2; for III: a = 9.074(4), b = 9.435(4), c = 9.829(5) ?, α = 116.12(4)°, β = 104.14(4)°, γ = 100.22(4)°, V = 692.3(6) ?3, Z = 1; for IV isostructural III: a = 9.084(4), b = 9.404(4), c = 9.869(4) ?, α = 116.31(3)°, β = 104.00(3)°, γ = 100.37(3)°, V = 692.1(5) ?3, Z = 1. Unlike the isolated tetrahedral CuX42− anion in structure II, an original chain anion (Cu4X62−) n is observed in the structures of π complexes III and IV. Original Russian Text ? M.M. Monchak, A.V. Pavlyuk, V.V. Kinzhibalo, M.G. Mys’kiv, 2009, published in Koordinatsionnaya Khimiya, 2009, Vol. 35, No. 6, pp. 414–419.  相似文献   

20.
The proton‐induced electron‐transfer reaction of a CuII μ‐thiolate complex to a CuI‐containing species has been investigated, both experimentally and computationally. The CuII μ‐thiolate complex [CuII2( LMeS )2]2+ is isolated with the new pyridyl‐containing ligand LMeSSLMe , which can form both CuII thiolate and CuI disulfide complexes, depending on the solvent. Both the CuII and the CuI complexes show reactivity upon addition of protons. The multivalent tetranuclear complex [CuI2CuII2( LS )2(CH3CN)6]4+ crystallizes after addition of two equivalents of strong acid to a solution containing the μ‐thiolate complex [CuII2( LS )2]2+ and is further analyzed in solution. This study shows that, upon addition of protons to the CuII thiolate compound, the ligand dissociates from the copper centers, in contrast to an earlier report describing redox isomerization to a CuI disulfide species that is protonated at the pyridyl moieties. Computational studies of the protonated CuII μ‐thiolate and CuI disulfide species with LSSL show that already upon addition of two equivalents of protons, ligand dissociation forming [CuI(CH3CN)4]+ and protonated ligand is energetically favored over conversion to a protonated CuI disulfide complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号