首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and sensitive platinum nanoparticles/poly(hydroxymethylated-3,4-ethylenedioxylthiophene)nanocomposite(PtNPs/PEDOT-MeOH) modified glassy carbon electrode(GCE) was successfully developed for the electrochemical determination of quercetin.Scanning electron microscopy and energy dispersive X-ray spectroscopy results indicated that the PtNPs were inserted into the PEDOTMeOH layer.Compared with the bare GCE and poly(3,4-ethylenedioxythiophene)(PEDOT) electrodes,the PtNPs/PEDOT-MeOH/GCE modified electrode exhibited a higher electrocatalytic ability toward the oxidation of quercetin due to the synergic effects of the electrocatalytic activity and strong adsorption ability of PtNPs together with the good water solubility and high conductivity of PEDOT-MeOH.The electrochemical sensor can be applied to the quantification of quercetin with a linear range covering0.04-91 μmol L~(-1) and a low detection limit of 5.2 nmol L~(-1).Furthermore,the modified electrode also exhibited good reproducibility and long-term stability,as well as high selectivity.  相似文献   

2.
Chuanyin Liu  Jiming Hu 《Electroanalysis》2008,20(10):1067-1072
Hemoglobin was entrapped in composite electrodeposited chitosan‐multiwall carbon nanotubes (MCNTs) film by assembling gold nanoparticles and hemoglobin step by step. In phosphate buffer solution (pH 7), a pair of well‐defined and quasireversible redox peaks appeared with formal potential at ?0.289 V and peak separation of 100 mV. The redox peaks respected for the direct electrochemistry of hemoglobin at the surface of chitosan‐MCNTs‐gold nanoparticles modified electrode. The parameters of experiments have also been optimized. The composite electrode showed excellent electrocatalysis to peroxide hydrogen and oxygen, the peak current was linearly proportional to H2O2 concentration in the range from 1×10?6 mol/L to 4.7×10?4 mol/L with a detection limit of 5.0×10?7 mol/L, and this biosensor exhibited high stability, good reproducibility and better selectivity. The biosensor showed a Michaelis–Menten kinetic response as H2O2 concentration is larger than 5.0×10?4 mol/L, the apparent Michaelis–Menten constant for hydrogen peroxide was calculated to be 1.61 μmol/L.  相似文献   

3.
A room temperature ionic liquid (IL) 1‐butyl‐3‐methylimidazolium hexafluorophosphate functionalized graphene (GE) was prepared and a hydrogen peroxide (H2O2) biosensor was fabricated by immobilizing hemoglobin (Hb) into the IL‐GE composite film. UV‐visible and Fourier transform infrared spectra of the composite film indicated that Hb retained its native structure in the film. Electrochemical investigation of the biosensor showed a pair of well‐defined, quasi‐reversible redox peaks with Epa=?0.209 V and Epc= ?0.302 V (vs. SCE) in pH 7.0 phosphate buffer solution at the scan rate of 100 mV/s. To the reduction of H2O2, the biosensor had a good linear range from 8.0×10?7 to 1.8×10?4 mol/L with a detection limit of 3.0×10?7 mol/L. The apparent Michaelis‐Menten constant KappM was estimated to be 3.4×10?5 mol/L.  相似文献   

4.
An amperometric cholesterol biosensor based on immobilization of cholesterol oxidase in a Prussian blue (PB)/polypyrrole (PPy) composite film on the surface of a glassy carbon electrode was fabricated. Hydrogen peroxide produced by the enzymatic reaction was catalytically reduced on the PB film electrode at 0 V with a sensitivity of 39 μA (mol/L)?1. Cholesterol in the concentration range of 10?5 ? 10?4 mol/L was determined with a detection limit of 6 × 10?7 mol/L by amperometric method. Normal coexisting compounds in the bio‐samples such as ascorbic acid and uric acid do not interfere with the determination. The excellent properties of the sensor in sensitivity and selectivity are attributed to the PB/PPy layer modified on the sensor.  相似文献   

5.
IntroductionOrderedfilmsofwater insolublesurfactantscanbepreparedbycastingtheirsolutionsordispersionsontoasolidsupport .1Evaporationofthesolventaftercastingleavesthinfilmself assembledintoorderedstackofbi layer ,whichissimilartobiologicalmembraneformedby…  相似文献   

6.
《Electroanalysis》2005,17(7):630-634
Myoglobin (Myb) of horse heart is incorporated on multi‐walled carbon nanotubes (MWNTs) and immobilized at a glassy carbon (GC) electrode surface. Its electrochemical behavior and enzyme activity are characterized by employing electrochemical methods. The results indicate that MWNTs can obviously promote the direct electron transfer between Myb and electrode, and that the Myb on MWNTs behaves as an enzyme‐like activity towards the electrochemical reduction of nitric oxide (NO). Accordingly, an unmediated NO biosensor is constructed. Experimental results reveal that the peak current related to NO is linearly proportional to its concentration in the range of 2.0×10?7–4.0×10?5 mol/L. The detection limit is estimated to be 8.0×10?8 mol/L. Considering a relative standard deviation of 2.1% in seven independent determinations of 1.0×10?5 mol/L NO, this biosensor shows a good reproducibility. The biosensor based on Myb/MWNTs modified electrode can be used for the rapid determination of trace NO in aqueous solution with a good stability, nice selectivity and easy construction.  相似文献   

7.
A novel conducting polymer, poly(hydroxymethylated-3,4-ethylenedioxy-thiophene) (PEDOT-MeOH), was electrochemically deposited onto the electrodes of micromachined neural probes. Uniformly distributed film was obtained from aqueous solution when doped with polystyrenesulfonate. The surface morphology was rough and had good cellular adhesion. Impedance spectroscopy showed that the magnitude of coated electrode was lower than that of the bare gold over a range of frequencies from 100 to 105 Hz. Since the biocompatibility of the interface between the neural probes and brain tissue plays an important role when the probes are implanted in the central nervous system for long-term application, biomolecules were incorporated into the coating. Nonapeptide CDPGYIGSR was codeposited as the counterion in the conducting films. The surface morphology of the coating was fuzzy, providing many bioactive sites for interaction with neural cells. The magnitude of impedance was as low as 53 kω at the biologically relevant frequency of 1 kHz. An in vitro experiment demonstrated that the neuroblastoma cells grew preferentially on the PEDOT-MeOH/CDPGYIGSR-coated electrode sites and spread beyond the electrode area.  相似文献   

8.
《Analytical letters》2012,45(9):1507-1515
A uric acid biosensor was fabricated by the Langmuir–Blodgett (LB) technique to immobilize the uricase on chitosan/Prussian blue (CS/PB) prefunctionalized indium-tin oxide (ITO) electrode. The effects of ionic strengths, acidity of subphase, and uricase amount on the film were studied. The electrochemical properties of the uricase/n-nonadecanoic acid (UOx/NA) LB film proved that CS/PB was a good electro-catalyst for the reduction of hydrogen peroxide produced by enzymatic reaction of UOx, and protein molecules retained their natural electro-catalytic activity. The linear range of uric acid detection was from 5 × 10?6 mol/L to 1.15 × 10?3 mol/L with a detection limit of 1.8 × 10?7 mol/L.  相似文献   

9.
Vitamin C(VC) content in commercial juices was voltammetrically determined using a highly selective and sensitive poly(3,4-ethylenedioxythiophene methanol)/ascorbate oxidase/Nafion-single-walled carbon nanotubes (PEDOTM/AO/Nafion-SWCNT) biosensor.The biocompatible PEDOTM matrix was prepared facilely by the one-step electrochemical deposition technique in lithium perchlorate aqueous solutions.AO was dip-coated on the surface of the biocompatible PEDOTM matrix.The mixture of Nafion-SWCNT was dip-cast onto the surface of AO layer when it was obtained by blending Nafion solution and SWCNT dispersion together in a volume ratio of 1:1.The prepared PEDOTM/AO/Nafion-SWCNT biosensor was used for the voltammetric determination of VC,which exhibited the good linear range(4.0×10-5-3×10-3mol/L),low detection limit(13μmol/L),pronounced sensitivity(1.4072 mA(mmol/L)-1 cm-2),high bioaffinity(low apparent Michaelis-Menten constant),good stability(good repeatability),high specificity(good anti-interference ability) coupled with the good reliability and feasibility(the determination of VC in commercial juices). Meanwhile,the good aqueous solubility and the low onset oxidation potential of EDOTM will be more beneficial to the application in biosensor field compared to 3,4-ethylenedioxythiophene.Moreover,the good biocompatibility of PEDOTM matrix and high selectivity of Nafion-SWCNT films also provide a promising platform for the development of biosensing devices.  相似文献   

10.
As a natural chiral selector, bovine serum albumin (BSA) has been used to recognize penicillamine (Pen) enantiomers through electrochemical methods. The recognition and assay rely on the stereoselectivity of BSA embedded in ultrathin Al2O3 sol–gel film coated on the surface of glassy carbon electrode (BSA/GCE). The enantioselective interaction between Pen enantiomers and BSA was monitored by cyclic voltammetry and electrochemical impedance spectroscopy measurements, from which larger response signals were obtained from d-Pen. The factors influencing the performance of the modified biosensor were also investigated. The association constant (K) was calculated to be 1.93?×?104?L?mol?1 for d-Pen and 1.20?×?103?L?mol?1 for l-Pen. A good linear response was exhibited with the concentration of Pen enantiomers by BSA/GCE over the range of 1?×?10?8–1?×?10?1?mol?L?1 with a detection limit of 3.31?×?10?9?mol?L?1.  相似文献   

11.
A novel biopolymer/room‐temperature ionic liquid composite film based on carrageenan, room temperature ionic liquid (IL) [1‐butyl‐3‐methylimidazolium tetra?uoroborate ([BMIM]BF4)] was explored for immobilization of hemoglobin (Hb) and construction of biosensor. Direct electrochemistry and electrocatalytic behaviors of Hb entrapped in the IL‐carrageenan composite ?lm on the surface of glassy carbon electrode (GCE) were investigated. UV‐vis spectroscopy demonstrated that Hb in the IL‐carrageenan composite ?lm could retain its native secondary structure. A pair of well‐de?ned redox peaks of Hb was obtained at the Hb‐IL‐carrageenan composite ?lm modi?ed electrode through direct electron transfer between the protein and the underlying electrode. The heterogeneous electron transfer rate constant (ks) was 2.02 s?1, indicating great facilitation of the electron transfer between Hb and IL‐carrageenan composite film modi?ed electrode. The modi?ed electrode showed excellent electrocatalytic activity toward reduction of hydrogen peroxide with a linear range of 5.0×10?6 to 1.5×10?4 mol/L and the detection limit was 2.12×10?7 mol/L (S/N=3). The apparent Michaelis‐Menten constant KMapp for hydrogen peroxide was estimated to be 0.02 mmol/L, indicating that the biosensor possessed high af?nity to hydrogen peroxide. In addition, the proposed biosensor showed good reproducibility and stability.  相似文献   

12.
The Prussian blue/ionic liquid-polyaniline/multiwall carbon nanotubes (PB/IL-PANI/MWNTs) composite film was fabricated by using cyclic voltammetry. The ion liquid acting as a lubricating agent, could enhance the electron delocalization degree and reduce the struc-tural defects of the polyaniline. The surface morphology of the composite film revealed that the PB nanoparticles have smaller size than that in pure PB film. Due to the introduction of ion liquid, the PB/IL-PANI/MWNTs composite film showed wonderful synergistic effect which can remarkably enhance sensitivity, expand linear range and broaden acidic adapt-ability for hydrogen peroxide detection. The composite film demonstrated good stability in neutral solution contrast to pure PB film, with a linear range from 2.5 μmol/L to 0.5 mmol/Land a high sensitivity of 736.8 μA·(mmol/L)-1·cm-2 for H2O2 detection. Based on the com-posite film, an amperometric glucose biosensor was then fabricated by immobilizing glucose oxidase. Under the optimal conditions, the biosensor also exhibits excellent response to glucose with the linear range from 12.5 μmol/L to 1.75 mmol/L and a high sensitivity of 94.79 μA (mmol/L)-1·cm-2 for H2O2. The detection limit was estimated 1.1 μmol/L. The resulting biosensor was applied to detect the blood sugar in human serum samples without any pretreatment, and the results were comparatively in agreement with the clinical assay.  相似文献   

13.
《Analytical letters》2012,45(17):3147-3160
Abstract

The multiwalled carbon nanotube–nickel hydroxide composite film used to modify glassy carbon electrode was prepared and confirmed by transmission electron microscopy and cyclic voltammetry. The process and mechanism of film formation were discussed in detail. The electrode modified with the composite film exhibited good catalytic activity toward electrochemical oxidation of hydrogen peroxide in 0.1 mol/L sodium hydroxide solution. Various factors affecting the electrocatalytic activity of nickel hydroxide film were investigated. The anodic peak current increased with the increased concentration of hydrogen peroxide. The linear range for the determination of hydrogen peroxide was from 1.5 × 10?6 mol/L to 2.5 × 10?3 mol/L with the detection limit 6.1 × 10?7 mol/L (S/N = 3). And the proposed method was applied to the determination of hydrogen peroxide in disinfector with higher sensitivity and lower detection limit.  相似文献   

14.
《Electroanalysis》2006,18(5):471-477
The precursor film was first formed on the Au electrode surface based on the self‐assembly of L ‐cysteine and the adsorption of gold colloidal nanoparticles (nano‐Au). Layer‐by‐layer (LBL) assembly films of toluidine blue (TB) and nano‐Au were fabricated by alternately immersing the electrode with precursor film into the solution of toluidine blue and gold colloid. Cyclic voltammetry (CV) and quartz crystal microbalance (QCM) were adopted to monitor the regular growth of {TB/Au} bilayer films. The successful assembly of {TB/Au}n films brings a new strategy for electrochemical devices to construct layer‐by‐layer assembly films of nanomaterials and low molecular weight materials. In this article, {TB/Au}n films were used as model films to fabricate a mediated H2O2 biosensor based on horseradish peroxidase, which responded rapidly to H2O2 in the linear range from 1.5×10?7 mol/L to 8.6×10?3 mol/L with a detection limit of 7.0×10?8 mol/L. Morphologies of the final assembly films were characterized with scanning probe microscopy (SPM).  相似文献   

15.
The present work describes the development of a nanocomposite system and its application in construction of a new amperometric biosensor applied in the determination of total polyphenolic content from propolis extracts. The nanocomposite system was based on covalent immobilization of laccase on functionalized indium tin oxide nanoparticles and it was morphologically and structural characterized. The casting of the developed nanocomposite system on the surface of a screen-printed electrode was used for biosensor fabrication. The analytical performance characteristics of the settled biosensor were determined for rosmarinic acid, caffeic acid and catechol (as laccase specific substrate). The linearity was obtained in the range of 1.06×10?6 ? 1.50×10?5 mol L?1 for rosmarinic acid, 1.90×10?7 ? 2.80×10?6 mol L?1 for caffeic acid and 1.66×10?6 ? 7.00×10?6 mol L?1 for catechol. A good sensitivity of amperometric biosensor 141.15 nA µmol?1 L?1 and fair detection limit 7.08×10?8 mol L?1 were obtained for caffeic acid. The results obtained for polyphenolic content of propolis extracts were compared with the chromatographic data obtained by liquid-chromatography with diode array detection.   相似文献   

16.
Despite the fact that a considerable amount of effort has been invested in the development of biosensors for the detection of pesticides, there is still a lack of a simple and low-cost platform that can reliably and sensitively detect their presence in real samples. Herein, an enzyme-based biosensor for the determination of both carbamate and organophosphorus pesticides is presented that is based on acetylcholinesterase (AChE) immobilized on commercially available screen-printed carbon electrodes (SPEs) modified with carbon black (CB), as a means to enhance their conductivity. Most interestingly, two different methodologies to deposit the enzyme onto the sensor surfaces were followed; strikingly different results were obtained depending on the family of pesticides under investigation. Furthermore, and towards the uniform application of the functionalization layer onto the SPEs’ surfaces, the laser induced forward transfer (LIFT) technique was employed in conjunction with CB functionalization, which allowed a considerable improvement of the sensor’s performance. Under the optimized conditions, the fabricated sensors can effectively detect carbofuran in a linear range from 1.1 × 10?9 to 2.3 × 10?8 mol/L, with a limit of detection equal to 0.6 × 10?9 mol/L and chlorpyrifos in a linear range from 0.7 × 10?9 up to 1.4 × 10?8 mol/L and a limit of detection 0.4 × 10?9 mol/L in buffer. The developed biosensor was also interrogated with olive oil samples, and was able to detect both pesticides at concentrations below 10 ppb, which is the maximum residue limit permitted by the European Food Safety Authority.  相似文献   

17.
《Electroanalysis》2004,16(3):169-174
A fast and sensitive approach to detect reserpine in urine using micellar electrokinetic capillary chromatography with electrochemiluminescence (ECL) of Ru(bpy)32+ detection is described. Using a 25 μm i.d. capillary as separation column, the ECL detector was coupled to the capillary in the absence of an electric field decoupler. Field‐amplified injection was used to minimize the effect of ionic strength in the sample and to achieve high sensitivity. In this way, the sample was analyzed directly without any pretreatment. The method was validated for reserpine in the urine over the range of 1×10?6?1×10?4 mol/L with a correlation coefficient of 0.996. The RSD for reserpine at a level of 5 μmol/L was 4.3%. The LOD (S/N=3) was estimated to be 7.0×10?8 mol/L. The average recoveries for 10 μmol/L reserpine spiked in human urine were 94%.  相似文献   

18.
Amperometric sensor based on neutral red-doped silica (NRSiO2) nanoparticles (NPs) was fabricated and coupled with a microdialysis sampling system




















































































































































































































































































for the detection of glutamate (Glu) in the rat striatum. The NRSiO2 NPs [about (45 ± 3) nm] were prepared with water-in-oil (W/O) microemulsion method, and characterized by transmission electron microscope (TEM) technique. The neutral red (NR) doped in silica network could maintain its high electroactivity and behave as an excellent electron mediator for electrocatalysis of hydrogen dioxide. Furthermore, the silica surface could prevent the leakage of NR, hence, the stability of biosensor was improved. The novel Glu biosensor showed a linear range from 5.0×10^-7 to 1.5×10^-4 mol/L, with a detection limit of 2.0×10^-7 mol/L (S/N=3).  相似文献   

19.
《Electroanalysis》2005,17(17):1571-1577
A novel electrochemical biosensor for phenol based on immobilization of tyrosinase‐peroxidase on mesoporous silica is described. The enhanced sensitivity of the tyrosinase‐horseradish peroxidase based biosensor to phenol was observed on comparing with tyrosinase or horseradish peroxidase monoenzyme modified electrodes. Two enzymes retained their enzymatic activities for phenol determination without any mediator. The preparation conditions of the biosensor are discussed. Optimization of the experimental parameters was performed with regard to pH and operating potential. The phenol sensor exhibited a fast response of less than 10 seconds. The sensitivity of the biosensor for phenol was 14 μA μM?1 cm?2 with a linear range from 2×10?7 to 2.3×10?4 M and a detection limit of 4.1×10?9 M. The biosensor showed a good stability and reproducibility.  相似文献   

20.
《Electroanalysis》2003,15(12):1031-1037
A cholesterol biosensors fabricated by immobilization of cholesterol oxidase (ChOx) in a layer of silicic sol‐gel matrix on the top of a Prussian Blue‐modified glassy carbon electrode was prepared. It is based on the detection of hydrogen peroxide produced by ChOx at ?0.05 V. The half‐lifetime of the biosensor is about 35 days. Cholesterol can be determined in the concentration range of 1×10?6?8×10?5 mol/L with a detection limit of 1.2×10?7 mol/L. Normal interfering compounds, such as ascorbic acid and uric acid do not affect the determination. The high sensitivity and outstanding selectivity are attributed to the Prussian Blue film modified on the sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号