首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single techniques of network approach have been used to obtain the numerical solution for a boundary value problem involving the Nernst-Planck and Poisson equations system. A network model has been proposed for a particular physical situation, namely, ionic transport in charged membranes including the Donnan equilibrium relations at the membrane/solution interfaces. With this network model and using the electrical circuit simulation program PSPICE, the ionic concentration profiles as well as electric potentials and ionic fluxes have been simulated as a function of time for the ternary systems HClKCl and NaClKCl.  相似文献   

2.
Charge mosaic membranes contain a mixture of anionic and cationic elements separated by thin neutral regions. In order to maintain eloctroneutrality, the overall flux of salts from electrolytic solutions through such membranes must occur with equal transport of cationic and anionic charge. The flux rate depends on the resistivities of the exchange elements and the solution composition. It is shown that Na+ and K+ can have vastly different relative transport rates depending on the selection of the membrane formulation and the receiver composition. The effect is attributed to ionic polarization of the membrane.  相似文献   

3.
Electrodialytic transport properties of anion exchange membranes were measured after formation of anionic polyelectrolyte layers on the membrane surfaces: relative transport number of various anions to chloride ions, current efficiency and apparent diffusion coefficients of neutral molecules. The anionic polyelectrolyte layers were formed by immersing the membrane into an aqueous solution of polycondensation product of sodium naphthalene sulfonate and formaldehyde or polystyrene sulfonic acid.

The change in the relative transport number between anions was remarkable in the anion exchange membrane with high ion exchange capacity by forming the layer. Results were: the relative transport number of sulfate ions to chloride ions decreased and those of nitrate ions to chloride ions, fluoride ions to chloride ions and bromide ions to chloride ions increased compared with the corresponding membrane. Although the apparent diffusion coefficient of neutral molecules suggested clogging of the membrane pores by the polyelectrolyte, anions with higher hydrated ionic diameter were able to permeate through the membrane easily. This means that difference of electrostatic repulsion force against two anions is effective on the change in the relative transport number of anions.  相似文献   


4.
The equilibrium and transport properties (conductivity, transport number, diffusion) of crosslinked ionomer membranes based on sulfinated and sulfonated PSU in aqueous solutions of HCl, NaCl and KCl have been investigated and compared with a Nafion 117 membrane. It has been found that these membranes are more compact and their conducting paths are of smaller dimension than that of the Nafion 117. The influence of length of crosslinking chain, changing from –(CH2)4– to –(CH2)12–, is particularly indicated by the diffusion coefficients; the conductivity and transport numbers of counterions are influenced only slightly. Practically no dependence of this effect on the transport number of H+ has been found.  相似文献   

5.
A novel method for producing asymmetric membranes based on conducting polymers is described. Two layers of different polypyrrole films (PPy–p-toluene sulphonate and PPy–dodecyl sulphate) were electrodeposited onto an electrode to form a sandwich or layer structure. The films produced could be removed from the electrode and had sufficiently good mechanical properties to be used as free-standing membranes in simple transport experiments. Using electrochemically induced transport utilising technology described previously it was shown that a highly asymmetric membrane had been formed with a ratio of up to 35:1 in terms of the flux in one direction compared with another. This was for the transport of simple salts such as KCl and NaCl. In mixtures of these salts it was still possible to derive some reasonable selectivity between cations with selectivity of K+ over Na+ in ratios up to 4.5:1.  相似文献   

6.
An equation that can describe the concentrations of ionic sites required for a Nernstian potentiometric response slope of neutral ionophore-incorporated ion-selective liquid membranes is presented. This equation is derived from a model based on electrical diffuse layers on both the membrane and the aqueous sides of the interface, in which the phase boundary potential is correlated to the surface charge density as well as the salt concentrations in the bulk membrane and aqueous solution. To experimentally and accurately confirm the validity of this equation, response characteristics of field effect transistors covered by neutral ionophore-based liquid membranes with varying concentrations of a derivative of tetraphenylborate as an anionic site but free of ionic impurities were examined. The observed membrane potentials and the response slopes for membranes with various concentrations of anionic sites were in good agreement with the values calculated from the theory presented in this paper with the measured complexation stability constants for the relevant systems. This result indicates that the theoretical prediction based on the proposed equation for the anionic site concentration is accessible for the preparation of neutral ionophore-incorporated ion-selective liquid membranes, which show Nernstian response slopes for the primary ions.  相似文献   

7.
Osmotic membrane distillation is a novel athermal membrane process that facilitates the maximum concentration of liquid foods under mild operating conditions. In the present study, the effect of various process parameters such as type, concentration and flow rate of the osmotic agent; type (polypropylene membranes) and pore size (0.05 and 0.2 μm) of the membrane; temperature with respect to transmembrane flux was studied. Experiments were performed with real systems (pineapple/sweet lime juice) in a flat membrane module. Osmotic agents namely sodium chloride and calcium chloride at varying concentrations are employed. For both the osmotic agents, higher transmembrane flux was observed at maximum osmotic agent concentration. In comparison with sodium chloride, higher transmembrane flux was observed in case of calcium chloride. A mass transfer-in-series resistance model has been employed, considering the resistance offered by the membrane as well the boundary layers (feed and brine sides) in case of real systems for the first time. The model could predict the variation of transmembrane flux with respect to different process parameters.  相似文献   

8.
Chitosan, a biopolymer obtained from chitin deacetylation, was solubilized by bipolar membrane electroacidification (BMEA). We showed earlier that limitation in solubilization process was mainly due to chitosan precipitation in the acidified compartment. If fouling can be reduced or prevented, BMEA could be an environmentally attractive method for chitosan solubilization. The purpose of the present work was to identify process conditions that could reduce chitosan fouling in BMEA. The factors studied were: the type of salt in the acidified compartment (NaCl or CH3COONa); the type of electrolyte in the basified compartment (KCl or HCl); and the current density (4 or 20 mA/cm2). Chitosan fouling was successfully reduced by a combination of NaCl salt and HCl electrolyte, while 98% chitosan solubilization yield was achieved by operating at a current density of 4 mA/cm2 with NaCl/KCl configuration with no apparent fouling. This work showed that water dissociation at the interface of the anionic membranes was the main factor responsible for chitosan precipitation.  相似文献   

9.
Ion transport across membranes with surface charge due to ion adsorption, including the diffuse double layer effects, is analysed using the network simulation method. The membrane system under study is a multilayer one constituted by a membrane and two diffusion boundary layers on both sides of the membrane. The ion transport processes are described by the Nernst–Planck and Poisson equations not only in the membrane–solution interfaces, but also in the membrane bulk and in the two diffusion boundary layers. The membrane has a negative surface charge due to an anion adsorption process. The structure of the equilibrium diffuse double layers and the steady-state current–voltage characteristic have been analysed for the case of an adsorption process described by a Langmuir-type adsorption isotherm. The evolution of the electric potential difference across the membrane system in the equilibrium state of the system as a function of the bathing concentrations, have been also analysed.  相似文献   

10.
Transmembrane transport of ammonia and carbon dioxide through perfluorosulfonic membranes in ionic forms of transition metals was studied in a wide temperature interval. The different patterns of the temperature plots of the permeability coefficient of ammonia were found for different ionic forms of the membrane. An increase in the ammonia permeability with an increase in the moisture contents of the membrane also depends on its ionic form. The effects observed are explained by the different structures of water—ammonia complexes formed with metal ions. The mechanism of transmembrane transport of ammonia through perfluorosulfonic membranes in various ionic forms is discussed.  相似文献   

11.
We have employed atomic-scale molecular dynamics simulations to address ion transport through transient water pores in phospholipid membranes. The formation of a water pore is induced by a transmembrane ionic charge imbalance, which gives rise to a significant potential difference across the membrane. The subsequent transport of ions through the pore discharges the transmembrane potential and makes the water pore metastable, leading eventually to its sealing. The findings highlight the importance of ionic charge fluctuations in spontaneous pore formation and their role in ion leakage through protein-free lipid membranes.  相似文献   

12.
Electroosmotic flow in template-prepared carbon nanotube membranes.   总被引:5,自引:0,他引:5  
Carbon nanotube membranes (CNMs) were prepared by doing chemical vapor deposition of carbon within the pores of a microporous alumina template. Electroosmotic flow (EOF) was driven across the CNMs by allowing the membrane to separate two electrolyte solutions and using an electrode in each solution to pass a constant ionic current through the nanotubes. EOF was investigated by measuring the flux of a probe molecule (phenol) across the CNM. The as-synthesized CNMs have anionic surface charge, and EOF is in the direction of cation migration across the membrane. Measurements of the rate of EOF as a function of applied transmembrane current provided the zeta potential. The effect of pH on zeta provided the pK(a) for the surface acidic sites responsible for this anionic charge; the acidic-site density was also determined. An electrochemical derivatization method was used to attach carboxylate groups to the nanotube walls; this enhances the anionic surface charge density, resulting in a corresponding increase in the EOF rate. Electrochemical derivatization was also used to attach cationic ammonium sites to the nanotube walls to yield CNMs that show EOF in the opposite direction of the as-synthesized or carboxylated membranes.  相似文献   

13.
Nine types of hydrophobic microporous membranes were tested for their influence on the retention of a range of volatile organic species when model aqueous solutions of the latter were subjected to osmotic distillation. Similar studies were carried out on Gordo grape juice and Valencia orange juice. Gas chromatography–mass spectrometry head-space analyses of the feed materials coupled with scanning electron microscopy and image analyses of the membranes used indicated that lower organic volatiles flux to water flux ratios occurred when pore sizes at the membrane surface were relatively large. The results have been interpreted in terms of differences in feed-membrane and stripper-membrane boundary layer resistances to organic volatiles transport resulting from different degrees of liquid intrusion into the membrane pores.  相似文献   

14.
The Tb3+ transport in dispersion supported liquid membrane (DSLM) consisting of polyvinylidene fluoride membrane (PVDF) as the liquid membrane support and dispersion solution including HCl solution as the stripping solution and 2‐ethyl hexyl phosphonic acid‐mono‐2‐ethyl hexyl ester (P507) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb3+ and different ionic strength in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on transport of Tb3+ has also been investigated, respectively. As a result, the optimum transport conditon of Tb3+ was that concentration of HCl solution was 4.0 mol/L, concentration of P507 was 0.10 mol/L, and volume ratio of membrane solution and stripping solution was 1.0 in the dispersion phase, and pH value was 5.2 in the feed phase. Ionic strength had no obvious effect on transport of Tb3+. Under the optimum condition studied, when initial concentration of Tb3+ was 1.0×10?4 mol/L, the transport rate of Tb3+ was up to 95.2% during the transport time of 95 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The results were in good agreement with the literature data.  相似文献   

15.
The effect of ionic strength on the rate of ion transport across ion-exchange membranes under either constant potential or constant current conditions in electrodialysis precludes direct application of this method to quantitative enrichment studies. Addition of an excess of electrolyte to a sample to normalize the ionic strength permits either dialysis mode to be employed. The rate of ion transport into a receiver electrolyte becomes directly proportional to concentration over at least 2.5 orders-of-magnitude. The concentration range for which linear enrichment is achieved for cations extends down to the 10-7 M level with 30-min dialyses into a mixed 0.1 M MgCl2—0.1 M HCl receiver. Alternatively, an internal standard approach can be used; however, the difficulty in matching the behaviour of membrane transport numbers as a function of ionic strength can limit the application of this approach.  相似文献   

16.
采用静电位阻模型对纳滤膜的跨膜电位进行了理论解析, 考察了溶液体积通量密度、原料液浓度、阴阳离子扩散系数比、膜孔半径和膜体积电荷密度对KCl(1-1型电解质)和MgCl2(2-1型电解质)中的纳滤膜跨膜电位的影响. 研究结果表明, 随着通量密度的增大, KCl和MgCl2的跨膜电位线性程度增强; 两种电解质的跨膜电位均随着原料液浓度和膜孔半径的增大而下降; 在不同的考察范围内, 阴阳离子扩散系数比对1-1型和2-1型电解质的跨膜电位的影响差别较大; KCl的跨膜电位随着膜体积电荷密度的变化关于零点呈现出对称性, 而MgCl2的跨膜电位零点则出现在膜体积电荷密度为负的条件下.  相似文献   

17.
The steady-state and transient electrical properties of ion-exchange membranes placed between two solutions with different values of the electrolyte concentration, have been simulated using the network simulation method. The ionic transport processes are theoretically described on the basis of the Nernst-Planck and Poisson equations. The system under study is constituted by a cation-exchange membrane in which the fixed-charge is homogeneously distributed in space and two diffusion boundary layers on both sides of the membrane, the electric double layers at the interfaces being included. The steady-state voltage-current characteristic and the profiles of the ionic concentrations and the electric potential, are analysed. Also, the choronopotentiometric response of the system has been discussed and the time evolution of the electric energy consumption evaluated. In particular, the influence of the ratio of the bathing concentrations on the permselectivity and the chronopotentiometric response of the ion-exchange membrane systems, has been established.  相似文献   

18.
The use of a solid polymer electrolyte in alkaline fuel cells. The objective of this research was to develop a new type of cheap anion exchange membranes for use in alkaline fuel cells. The polyelectrolyte anion exchange membrane was prepared by grafting quaternary amines (DABCO, TEA) on the epichlorhydrine polymer, consolidated by reticulation. Obtained ionic conductivities are over 10−2 S.cm−1, with a concentration of positive ionic sites of a few milli-equivalents per gram of material. Measured anionic transport numbers are greater than 0.90. Membranes, which can absorb 30 to 50% of water, are quasi impervious to gases such as H2 and 02 and can operate at temperatures up to 120°C. Alkaline fuel cells assembled with both types of membranes showed good performances. Particular attention was devoted to the membrane-electrode interface.  相似文献   

19.
The effect of the incorporation of the major light-harvesting complex of photosystem II (LHCII) to planar bilayer lipid membranes (BLMs) formed from soybean asolectin and unilamellar small liposomes formed from egg-yolk phosphatidylcholine on ion transport across the lipid bilayer has been studied. The specific conductivity of the BLM rises from 5.2 +/- 0.8 x 10(-9) up to 510 x 10(-9) O(-1) cm(-2) upon the incorporation of LHCII. The conductivity of the membrane with LHCII depends upon the ionic strength of the bathing solution and is higher by a factor of five when the KCl concentration increases from 0.02 to 0.22 M. Such a strong effect has not been observed in the same system without LHCII. The liposome model is also applied to analyse the effect of LHCII on the bilayer permeability to protons. Unilamellar liposomes with a diameter less than 50 nm have been prepared, containing (trapped inside) Neutral Red, a pigment sensitive to proton concentration. A gradient of protons on the membrane is generated by the acidification of the liposome suspension and spectral changes of Neutral Red are recorded in time, reflecting the penetration of protons into the internal space of liposomes. Two components of proton permeation across liposome membranes are observed: a fast one (proceeding within seconds) and a slow one (operating on the time scale of minutes). The rate of both components of proton transport across LHCII-containing membranes is higher than for liposomes alone. The enhancement effect of LHCII on the ion transport across the lipid membrane is discussed in terms of aggregation of the pigment-protein complexes. The possible physiological importance of such an effect in controlling ion permeability across the thylakoid membrane is discussed.  相似文献   

20.
Sol–gel derived organic–inorganic hybrids containing phosphotungstic acid (PWA) have been prepared previously to obtain proton conductive membranes. However, leaking of PWA was a serious problem to achieve the higher proton conductivity. In this study, polyelectrolyte membranes functionalized with sulfonic acid groups were fabricated by the sol–gel method. Proton conductivity measurements were performed on an impedance analyzer at 80°C/95% RH. The functionalized polyelectrolyte membranes exhibited the proton conductivity σ ~ 0.9 (S/cm) which was much higher than the previously reported hybrids containing PWA. Although the hybrids exhibited fairly high proton conductivity irrespective to the catalysts used, that under the low relative humidity strongly depends on the catalysts. Among the hybrids prepared in this study, the membrane synthesized with HCl showed outstanding proton conductive properties even at the low humidity thanks to the proton transport channel formed by the swelling of ionic clusters. This fact was confirmed by measuring the ion exchange capacity, water uptake, swelling rate, Fourier transform infrared spectroscopy, atomic force microscopy, and thermogravimetric analysis. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号