首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We study the global attractor of the non-autonomous 2D Navier–Stokes (N.–S.) system with singularly oscillating external force of the form . If the functions g 0(x, t) and g 1 (z, t) are translation bounded in the corresponding spaces, then it is known that the global attractor is bounded in the space H, however, its norm may be unbounded as since the magnitude of the external force is growing. Assuming that the function g 1 (z, t) has a divergence representation of the form where the functions (see Section 3), we prove that the global attractors of the N.–S. equations are uniformly bounded with respect to for all . We also consider the “limiting” 2D N.–S. system with external force g 0(x, t). We have found an estimate for the deviation of a solution of the original N.–S. system from a solution u 0(x, t) of the “limiting” N.–S. system with the same initial data. If the function g 1 (z, t) admits the divergence representation, the functions g 0(x, t) and g 1 (z, t) are translation compact in the corresponding spaces, and , then we prove that the global attractors converges to the global attractor of the “limiting” system as in the norm of H. In the last section, we present an estimate for the Hausdorff deviation of from of the form: in the case, when the global attractor is exponential (the Grashof number of the “limiting” 2D N.–S. system is small).   相似文献   

2.
In the present article we consider a special class of equations
when the function (E is a strictly convex Banach space) is V-monotone with respect to (w.r.t.) , i.e. there exists a continuous non-negative function , which equals to zero only on the diagonal, so that the numerical function α(t):= V(x 1(t), x 2(t)) is non-increasing w.r.t. , where x 1(t) and x 2(t) are two arbitrary solutions of (1) defined on . The main result of this article states that every V-monotone Levitan almost periodic (almost automorphic, Bohr almost periodic) Eq. (1) with bounded solutions admits at least one Levitan almost periodic (almost automorphic, Bohr almost periodic) solution. In particulary, we obtain some new criterions of existence of almost recurrent (Levitan almost periodic, almost automophic, recurrent in the sense of Birkgoff) solutions of forced vectorial Liénard equations.   相似文献   

3.
Résumé A l’aide d’inégalités différentielles, on établit une estimation proche de l’optimalité pour la norme dans de l’unique solution bornée de u′′ + cu′ + Au = f(t) lorsque A = A * ≥ λ I est un opérateur borné ou non sur un espace de Hilbert réel H, V = D(A 1/2) et λ, c sont des constantes positives, tandis que . By using differential inequalities, a close-to-optimal bound of the unique bounded solution of u′′ + cu′ + Au = f(t) is obtained whenever A = A * ≥ λ I is a bounded or unbounded linear operator on a real Hilbert space H, V = D(A 1/2) and λ, c are positive constants, while .
  相似文献   

4.
In this paper, we construct solutions u(t,x) of the heat equation on such that has nontrivial limit points in as t → ∞ for certain values of μ > 0 and β > 1/2. We also show the existence of solutions of this type for nonlinear heat equations.   相似文献   

5.
We study the long time behavior of the solution X(t, s, x) of a 2D-Navier–Stokes equation subjected to a periodic time dependent forcing term. We prove in particular that as , approaches a periodic orbit independently of s and x for any continuous and bounded real function .   相似文献   

6.
For , we consider a family of damped wave equations , where − Λ denotes the Laplacian with zero Dirichlet boundary condition in L 2(Ω). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space semigroups which have global attractors A η, . We show that the family , behaves upper and lower semicontinuously as the parameter η tends to 0+.  相似文献   

7.
We consider the set of 2π-periodic solutions of the ordinary differential equation u′′ + g(u) = 0 for a nonlinearity , satisfying a dissipative condition of the form for , and under the generic assumption that the potential G, given by , is a Morse function. Under these assumptions, we characterize the period maps realizable by planar Hamiltonian systems of the form . Considering the Morse type of G, the set of periodic orbits in the phase space is decomposed into disks and annular regions. Then, the realizable period maps are described in terms of sets of sequences of positive integers corresponding to the lap numbers of the 2π-periodic solutions. This leads to a characterization of the classes of Morse–Smale attractors that are realizable by dissipative semilinear parabolic equations of the form defined on the circle, .   相似文献   

8.
The paper deals with positive solutions of the initial-boundary value problem for with zero Dirichlet data in a smoothly bounded domain . Here is positive on (0,∞) with f(0) = 0, and λ1 is exactly the first Dirichlet eigenvalue of −Δ in Ω. In this setting, (*) may possess oscillating solutions in presence of a sufficiently strong degeneracy. More precisely, writing , it is shown that if then there exist global classical solutions of (*) satisfying and . Under the additional structural assumption , s > 0, this result can be sharpened: If then (*) has a global solution with its ω-limit set being the ordered arc that consists of all nonnegative multiples of the principal Laplacian eigenfunction. On the other hand, under the above additional assumption the opposite condition ensures that all solutions of (*) will stabilize to a single equilibrium.   相似文献   

9.
We consider a constant coefficient coagulation equation with Becker–D?ring type interactions and power law input of monomers J 1(t) = α t ω, with α > 0 and . For this infinite dimensional system we prove solutions converge to similarity profiles as t and j converge to infinity in a similarity way, namely with either or constants, where is a function of t only. This work generalizes to the non-autonomous case a recent result of da Costa et al. (2004). Markov Processes Relat. Fields 12, 367–398. and provides a rigorous derivation of formal results obtained by Wattis J. Phys. A: Math. Gen. 37, 7823–7841. The main part of the approach is the analysis of a bidimensional non-autonomous system obtained through an appropriate change of variables; this is achieved by the use of differential inequalities and qualitative theory methods. The results about rate of convergence of solutions of the bidimensional system thus obtained are fed into an integral formula representation for the solutions of the infinite dimensional system which is then estimated by an adaptation of methods used by da Costa et al. (2004). Markov Processes Relat. Fields 12, 367–398.   相似文献   

10.
Let be the set of m × m matrices A(λ) depending analytically on a parameter λ in a closed interval . Consider one-parameter families of quasi-periodic linear differential equations: , where is analytic and sufficiently small. We prove that there is an open and dense set in , such that for each the equation can be reduced to an equation with constant coefficients by a quasi-periodic linear transformation for almost all in Lebesgue measure sense provided that g is sufficiently small. The result gives an affirmative answer to a conjecture of Eliasson (In: Proceeding of Symposia in Pure Mathematics). Dedicated to Professor Zhifen Zhang on the occasion of her 80th birthday  相似文献   

11.
It is well-known that a KAM torus can be considered as a graph of smooth viscosity solution. Salamon and Zehnder (Comment Math Helv 64:84–132, 1989) have proved that there exist invariant tori having prescribed Diophantine frequencies for nearly integrable and positively definite Lagrangian systems with associated Hamiltonian H, whose Diophantine index is τ. If the invariant torus is represented as in the cotangent bundle , then we can show that for any viscosity solution u (x, P), which satisfies the H-J Eq. (1.1),
when is small enough. For the more exact form, please see Theorem 2 for details.  相似文献   

12.
We deal with a reaction–diffusion equation u t = u xx + f(u) which has two stable constant equilibria, u = 0, 1 and a monotone increasing traveling front solution u = φ(x + ct) (c > 0) connecting those equilibria. Suppose that u = a (0 < a < 1) is an unstable equilibrium and that the equation allows monotone increasing traveling front solutions u = ψ1(x + c 1 t) (c 1 < 0) and ψ2(x + c 2 t) (c 2 > 0) connecting u = 0 with u = a and u = a with u = 1, respectively. We call by an entire solution a classical solution which is defined for all . We prove that there exists an entire solution such that for t≈ − ∞ it behaves as two fronts ψ1(x + c 1 t) and ψ2(x + c 2 t) on the left and right x-axes, respectively, while it converges to φ(x + ct) as t→∞. In addition, if c > − c 1, we show the existence of an entire solution which behaves as ψ1( − x + c 1 t) in and φ(x + ct) in for t≈ − ∞.  相似文献   

13.
We establish the saddle-point property of the system of functional differential equations (t) = Ax(t) + Bx((t)) + C ((t)) + f (x(t), x((t))), (0) = 0.Translated from Neliniini Kolyvannya, Vol. 7, No. 3, pp. 302–310, July–September, 2004.  相似文献   

14.
We consider diffeomorphisms f of a smooth compact riemannian mainfold M and its suspension flow . Assuming some regularity of the stable (unstable) sets at the points we prove the persistence in the future of {f n (x), n ≥ 0} or , i.e., that C 0 small perturbations g of f have a semi-trajectory that closely shadows {f n (x), n ≥ 0} and that the suspension of g has also a semi-trajectory that closely shadows . In case x belongs to a minimal set of f we show that the assumptions concerning the regularity of stable and unstable sets could be reduced to a neighbourhood of x.  相似文献   

15.
We show two examples of systems in with such that |Zt| is strictly decreasing in time for any n but as .  相似文献   

16.
We obtain attractor and inertial-manifold results for a class of 3D turbulent flow models on a periodic spatial domain in which hyperviscous terms are added spectrally to the standard incompressible Navier–Stokes equations (NSE). Let P m be the projection onto the first m eigenspaces of A =−Δ, let μ and α be positive constants with α ≥3/2, and let Q m =IP m , then we add to the NSE operators μ A φ in a general family such that A φQ m A α in the sense of quadratic forms. The models are motivated by characteristics of spectral eddy-viscosity (SEV) and spectral vanishing viscosity (SVV) models. A distinguished class of our models adds extra hyperviscosity terms only to high wavenumbers past a cutoff λ m0 where m 0m, so that for large enough m 0 the inertial-range wavenumbers see only standard NSE viscosity. We first obtain estimates on the Hausdorff and fractal dimensions of the attractor (respectively and ). For a constant K α on the order of unity we show if μ ≥ ν that and if μ ≤ ν that where ν is the standard viscosity coefficient, l 0 = λ1−1/2 represents characteristic macroscopic length, and is the Kolmogorov length scale, i.e. where is Kolmogorov’s mean rate of dissipation of energy in turbulent flow. All bracketed constants and K α are dimensionless and scale-invariant. The estimate grows in m due to the term λ m 1 but at a rate lower than m 3/5, and the estimate grows in μ as the relative size of ν to μ. The exponent on is significantly less than the Landau–Lifschitz predicted value of 3. If we impose the condition , the estimates become for μ ≥ ν and for μ ≤ ν. This result holds independently of α, with K α and c α independent of m. In an SVV example μ ≥ ν, and for μ ≤ ν aspects of SEV theory and observation suggest setting for 1/c within α orders of magnitude of unity, giving the estimate where c α is within an order of magnitude of unity. These choices give straight-up or nearly straight-up agreement with the Landau–Lifschitz predictions for the number of degrees of freedom in 3D turbulent flow with m so large that (e.g. in the distinguished-class case for m 0 large enough) we would expect our solutions to be very good if not virtually indistinguishable approximants to standard NSE solutions. We would expect lower choices of λ m (e.g. with a > 1) to still give good NSE approximation with lower powers on l 0/l ε, showing the potential of the model to reduce the number of degrees of freedom needed in practical simulations. For the choice , motivated by the Chapman–Enskog expansion in the case m = 0, the condition becomes , giving agreement with Landau–Lifschitz for smaller values of λ m then as above but still large enough to suggest good NSE approximation. Our final results establish the existence of a inertial manifold for reasonably wide classes of the above models using the Foias/Sell/Temam theory. The first of these results obtains such an of dimension N > m for the general class of operators A φ if α > 5/2. The special class of A φ such that P m A φ = 0 and Q m A φQ m A α has a unique spectral-gap property which we can use whenever α ≥ 3/2 to show that we have an inertial manifold of dimension m if m is large enough. As a corollary, for most of the cases of the operators A φ in the distinguished-class case that we expect will be typically used in practice we also obtain an , now of dimension m 0 for m 0 large enough, though under conditions requiring generally larger m 0 than the m in the special class. In both cases, for large enough m (respectively m 0), we have an inertial manifold for a system in which the inertial range essentially behaves according to standard NSE physics, and in particular trajectories on are controlled by essentially NSE dynamics.   相似文献   

17.
We investigate the dynamics of the semiflow φ induced on H01(Ω) by the Cauchy problem of the semilinear parabolic equation
on Ω. Here is a bounded smooth domain, and has subcritical growth in u and satisfies . In particular we are interested in the case when f is definite superlinear in u. The set
of attraction of 0 contains a decreasing family of invariant sets
distinguished by the rate of convergence . We prove that the Wk’s are global submanifolds of , and we find equilibria in the boundaries . We also obtain results on nodal and comparison properties of these equilibria. In addition the paper contains a detailed exposition of the semigroup approach for semilinear equations, improving earlier results on stable manifolds and asymptotic behavior near an equilibrium.Supported by DFG Grant BA 1009/15-1.  相似文献   

18.
We study the large-time behaviour of the solutions u of the evolution equation involving nonlinear diffusion and gradient absorption
We consider the problem posed for and t  >  0 with non-negative and compactly supported initial data. We take the exponent p  >  2 which corresponds to slow p-Laplacian diffusion, and the exponent q in the superlinear range 1  <  q  <  p  −  1. In this range the influence of the Hamilton–Jacobi term is determinant, and gives rise to the phenomenon of localization. The large-time behaviour is described in terms of a suitable self-similar solution that solves a Hamilton–Jacobi equation. The shape of the corresponding spatial pattern is rather conical instead of bell-shaped or parabolic. Dedicated to Pavol Brunovsky.  相似文献   

19.
We consider in this article a nonlinear reaction–diffusion system with a transport term (L,∇ x )u, where L is a given vector field, in an unbounded domain Ω. We prove that, under natural assumptions, this system possesses a locally compact attractor in the corresponding phase space. Since the dimension of this attractor is usually infinite, we study its Kolmogorov’s ɛ-entropy and obtain upper and lower bounds of this entropy. Moreover, we give a more detailed study of the spatio-temporal chaos generated by the spatially homogeneous RDS in . In order to describe this chaos, we introduce an extended (n + 1)-parametrical semigroup, generated on the attractor by 1-parametrical temporal dynamics and by n-parametrical group of spatial shifts ( = spatial dynamics). We prove that this extended semigroup has finite topological entropy, in contrast to the case of purely temporal or purely spatial dynamics, where the topological entropy is infinite. We also modify the concept of topological entropy in such a way that the modified one is finite and strictly positive, in particular for purely temporal and for purely spatial dynamics on the attractor. In order to clarify the nature of the spatial and temporal chaos on the attractor, we use (following Zelik, 2003, Comm. Pure. Appl. Math. 56(5), 584–637) another model dynamical system, which is an adaptation of Bernoulli shifts to the case of infinite entropy and construct homeomorphic embeddings of it into the spatial and temporal dynamics on . As a corollary of the obtained embeddings, we finally prove that every finite dimensional dynamics can be realized (up to a homeomorphism) by restricting the temporal dynamics to the appropriate invariant subset of .  相似文献   

20.
In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where a c D t α x(t)) and 0<α<1, such that the following is the corresponding Euler–Lagrange
(1)
At last, exact solutions for some Euler–Lagrange equations are presented. In particular, we consider the following equations
(2)
(3)
where g(t) and f(t) are suitable functions. D. Baleanu is on leave of absence from Institute of Space Sciences, P.O. BOX MG-23, 76900 Magurele-Bucharest, Romania. e-mail: baleanu@venus.nipne.ro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号