首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We describe here a resonance light scattering (RLS) method for uranium (VI) detection by using phosphorylethanol-amido-salophen (PAS) as optical probe. PAS is a tetradentatemonodentate ditopic ligand in which the tetradentate and monodentate ligands are salophen moiety and phosphate group, respectively. PAS can chelate uranyl with its salophen moiety. The chelated uranyl can connect phosphate group in another PAS through coordination reaction. This causes the self-assembly of PAS with uranyl to form a metallo-supramolecular polymer, resulting in a production of strong RLS signal. The RLS method was established based on the self-assemble. The RLS intensity is linearly related to the concentration of uranium (VI) in the 0.8–32 ng mL?1 range, with a detection limit of 0.24 ng mL?1 detection limit under optimal conditions. The method was successfully applied to determine uranium (VI) in environmental water samples with the recoveries between 97.1% and 102.6%.  相似文献   

2.
A new wireless sensing method for the detection of uranium in water samples has been reported in this paper. The method is based on a sandwich-type detection strategy. Salophen, a tetradentate ligand of uranyl ion, was immobilized on the surface of the polyurethane-protected magnetoelastic sensor as receptor for the capture of uranyl ion. The phosphorylated polyvinyl alcohol coated magnetic Fe3O4 nanoparticles were used as signal-amplifying tags of uranyl ion. In a procedure of determining uranium, firstly uranyl ion in sample solution was captured on the sensor surface. Then the captured uranyl bound the nanoparticle through its coordination with the phosphate group. The amount of uranium was detected through the measure of the resonance frequency shift caused by the enhanced mass loading on the sensor surface. A linear range was found to be 0.2–20.0 μg/L under optimal conditions with a detection limit of 0.11 μg/L. The method has been applied to determine uranium in environmental water samples with the relative standard deviations of 2.1–3.6 % and the recoveries of 98.0–101.5 %. The present technique is one of the most suitable techniques for assay of uranium at trace level in environmental water samples collected from different sources.  相似文献   

3.
Determination of trace uranyl ions was performed by using mixed micellar system and spectrophotometric determination. The method is based on cloud point extraction of uranyl ions after formation of an ion-association complex in the presence of Celestine Blue and sodium dodecyl sulfate. Then, the formed complex was extracted to non-ionic surfactant phase of Triton X-114 at pH 8.0. The optimal extraction and reaction conditions (e.g. concentrations and types of surfactants, concentration of complex forming agent, incubation conditions) were studied and analytical characteristics of the method (e.g. limit of detection, linear range, pre-concentration factor) were obtained by experimental studies. Linearity was obeyed in the range of 50–1,500 ng mL?1 for uranium(VI) ion and the detection limit of is 14.20 ng mL?1. The interference effects of common ions were also tested and validation studies were performed by using recovery test. The method was applied to the determination of uranium(VI) in several real samples.  相似文献   

4.
《Analytical letters》2012,45(7):1128-1143
Abstract

The spectrophotometric behavior of uranium (VI) with L-3-(3, 4-dihydroxy phenyl) alanine (LDOPA) reagent revealed that the uranium can form a ML2 complex with LDOPA in solution. Thus a highly sensitive adsorptive stripping voltammetric protocol for measuring of trace uranium, in which the preconcentration was achieved by adsorption of the uranium-LDOPA complex at hanging mercury drop electrode (HMDE), is described. Optimal conditions were found to be a 0.02 M ammonium buffer (pH 9.5) containing 2.0 × 10?5 M (LDOPA), an accumulation potential of ? 0.1 V (versus Ag/AgCl) and an accumulation time of 120 sec.

The peak current and concentration of uranium accorded with linear relationship in the range of 0.5–300 ng ml?1. The relative standard deviation (at 10 ng ml?1) is 3.6% and the detection limit is 0.27 ng ml?1. The interference of some common ions was studied. Applicability to different real samples is illustrated. The attractive behavior of this reagent holds great promise for routine environmental and industrial monitoring of uranium.  相似文献   

5.
In this work, multi-walled carbon nanotubes (MWCNTs)-coated cellulose acetate membrane was used for on-line extraction and pre-concentration of uranium from aqueous samples prior to inductively coupled plasma optical emission spectrometry (ICP-OES) determination. Sample solutions containing the U(VI)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP) complex were passed through the membrane. The adsorbed analyte was subsequently eluted from the membrane with acid, which was directly introduced into the ICP-OES nebuliser. The main variables affecting the pre-concentration and determination steps of uranium were studied and optimised. Under the optimised conditions, the enrichment factor of 150 and the detection limit of 0.16 μg L–1 were obtained. This method was successfully used for determination of uranium in environmental water samples.  相似文献   

6.
研究了在盐酸介质中,V(Ⅴ)-I--十六烷基三甲基溴化铵(CTMAB)离子缔合物的共振散射光谱。实验发现,当有V(Ⅴ)存在时,V(Ⅴ)与过量的I-反应生成I3-,I3-与CTMAB形成离子缔合物微粒(CTMAB+.I3-)n,使I--CTMAB溶液的共振光散射强度显著增加。在波长563nm处,共振散射光强度最大且光散射强度与钒浓度在2~60ng/mL范围内呈正比,据此建立了测定环境样品中痕量钒的共振散射光谱分析新方法,方法检出限为0.66ng/mL。用拟定的方法测定环境样品中微量钒,相对标准偏差小于7.5%,回收率在97.8%~102.4%。  相似文献   

7.
The green algae Chlorella (Chlorella pyrenoidosa) have the ability to bind high amounts of uranium(VI) in the pH range from 3 to 6. At pH 3 up to 20 % of the uranium is bound by the algal cells whereas the uranium removal by algal cell is almost complete at pH 5 and 6 in the concentration range of 4 × 10?4 to 1.6 × 10?3 M. Sorption capacities are in the range of 300–350 mg g?1 and 250–280 mg g?1 for fresh water and seawater respectively. Concentration of uranium was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) by using two different emission spectral lines at 409.014 and 424.167 nm. Environmental scanning electron microscopy (ESEM) complimented with energy dispersive X-ray (EDX) is used to characterize the binding sites of uranyl species on algal cell in the selected pH range. The micrographs show a regular distribution of U(VI) on the cell surface. Attenuated total reflectance-fourier transform infrared (ATRFTIR) spectrum of Chlorella indicates that the binding of U(VI) either to phosphodiesters (P–O–aryl/P–O–alkyl), and combination of amine, secondary amine and imine = NH respectively. These sites in Chlorella groups are mainly responsible for the removal and binding of U(VI) by formation of organic and/or inorganic uranyl phosphates.  相似文献   

8.
Cryogenic techniques are currently used in scanning tunnelling microscopy (STM) and single molecule spectroscopy. Recently such cryogenic devices have also been adapted to time resolved laser-induced fluorescence spectroscopy (TRLFS) systems applied to uranium(VI). In our study, we interpret TRLFS results obtained for the uranyl(VI) glucose system at room temperature (RT) and under cryogenic conditions of 153 K (cryo-TRLFS). A uranyl(VI) glucose complex was only identified by cryo-TRLFS measurements at pH 5 and not by RT measurements. The uranyl(VI) glucose complex was characterized by five emission bands at 499.0, 512.1, 525.2, 541.7, and 559.3 nm and a fluorescence lifetime of 20.9 ± 2.9 μs. The uranyl(VI) glucose complex formation constant was calculated for the first time to be logßI=0.1 M = 15.25 ± 0.96. Cryo-TRLFS investigation opens up new possibilities for the determination of complex formation constants since interfering quenching effects often encounter at RT are suppressed by measurements at cryogenic conditions.  相似文献   

9.
A novel method is designed for the direct determination of trace amounts of molybdenum(VI) in tap water, human hair, and Chinese herbal medicine by means of decreasing resonance light scattering (RLS) technique. The characteristics of RLS spectra, the effective factors, and optimum conditions of the reaction were studied. In the medium of hydrochloric acid (pH 2.38), Mo(VI), dibromohydroxyphenylfluorone (DBHPF), and Triton X-100 react to form a complex, resulting in significant decreasing RLS signals of DBHPF-Triton X-100. The decreasing RLS intensity at 583.0 nm is proportional to the concentration of Mo(VI) up to 8.0 ng mL(-1). The detection limit is 0.013 ng mL(-1). The method is simple, reproducible, with reaction rapidity and stability of complexes formed. Moreover, the high selectivity and sensitivity of this method permits its direct determination of molybdenum(VI) in tap water, human hair, and Chinese herbal medicine and the results are in agreement with those obtained by the inductively coupled plasma atomic emission spectrometry (ICP-AES) method.  相似文献   

10.
A simple and reliable method has been developed for the determination of uranium(VI). The method is based on the separation and preconcentration of uranium(VI) using a column packed with 8-hydroxyquinoline immobilized on surfactant coated alumina prior to its spectrophotometric determination with arsenazo III. The effect of pH, sample flow rate and volume, elution conditions, and foreign ions on the sorption of uranium(VI) has been investigated. A preconcentration factor of 200 was achieved by passing 1000 mL of sample through the column. The relative standard deviation for 10 replicate analyses at the 100 ng/mL level of uranium(VI) was 2.1% and the detection limit was 0.12 ng/mL. The method was success-fully applied to the determination of uranium in natural water samples. The accuracy was assessed through recovery experiments and the analysis of a certified reference material.  相似文献   

11.
A simple and reliable method has been developed for the determination of uranium(VI). The method is based on the separation and preconcentration of uranium(VI) using a column packed with 8-hydroxyquinoline immobilized on surfactant coated alumina prior to its spectrophotometry determination with Arsenazo III. The effect of pH, sample flow rate and volume, elution conditions, and foreign ions on the sorption of uranium(VI) has been investigated. A preconcentration factor of 200 was achieved by passing 1000 mL of sample through the column. The relative standard deviation for 10 replicate analyses at the 100 ng/mL level of uranium(VI) was 2.1% and the detection limit was 0.12 ng/mL. The method was successfully applied to the determination of uranium in natural water samples. The accuracy was assessed through recovery experiments and the analysis of a certified reference material.  相似文献   

12.
In this study, the development of a new sensitive method for the analysis of alpha-dicarbonyls glyoxal (G) and methylglyoxal (MG) in environmental ice and snow is presented. Stir bar sorptive extraction with in situ derivatization and liquid desorption (SBSE-LD) was used for sample extraction, enrichment, and derivatization. Measurements were carried out using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). As part of the method development, SBSE-LD parameters such as extraction time, derivatization reagent, desorption time and solvent, and the effect of NaCl addition on the SBSE efficiency as well as measurement parameters of HPLC-ESI-MS/MS were evaluated. Calibration was performed in the range of 1–60 ng/mL using spiked ultrapure water samples, thus incorporating the complete SBSE and derivatization process. 4-Fluorobenzaldehyde was applied as internal standard. Inter-batch precision was <12 % RSD. Recoveries were determined by means of spiked snow samples and were 78.9?±?5.6 % for G and 82.7?±?7.5 % for MG, respectively. Instrumental detection limits of 0.242 and 0.213 ng/mL for G and MG were achieved using the multiple reaction monitoring mode. Relative detection limits referred to a sample volume of 15 mL were 0.016 ng/mL for G and 0.014 ng/mL for MG. The optimized method was applied for the analysis of snow samples from Mount Hohenpeissenberg (close to the Meteorological Observatory Hohenpeissenberg, Germany) and samples from an ice core from Upper Grenzgletscher (Monte Rosa massif, Switzerland). Resulting concentrations were 0.085–16.3 ng/mL for G and 0.126–3.6 ng/mL for MG. Concentrations of G and MG in snow were 1–2 orders of magnitude higher than in ice core samples. The described method represents a simple, green, and sensitive analytical approach to measure G and MG in aqueous environmental samples.  相似文献   

13.
A double-receptor sandwich method for the fluorescence determination of adenosine triphosphate (ATP) is proposed in this paper. The solid phase receptor on the surface of glass slides is a molecularly imprinted membrane (MIM) containing an artificial nanocavity. It is constructed by a molecular imprinting technique using adenosine monophosphate (AMP) as a template molecule. The labeled receptor is a uranyl–salophen complex containing a fluorescent group or uranyl–salophen–fluorescein (USF). It is synthesized with salophen, 5-aminofluorescein, and uranyl. In a procedure of determining ATP, ATP in sample solution is first adsorbed on the surface of the glass slide through the combination of the AMP group in ATP with the nanocavity in MIM. Then, the adsorbed ATP binds USF through the coordination reaction of the phosphate group in ATP with uranyl in USF to form a sandwich-type structure of MIM-ATP-USF. The amount of ATP is detected through the fluorescence determination of USF bound on the slide. Under optimal conditions, the linear range for the determination of ATP is 0.3 to 4.8 nmol/mL with a detection limit of 0.041 nmol/mL. The proposed method has been successfully employed for the determination of ATP in real samples with the recoveries of 98.5 to 102.5 %.  相似文献   

14.
This study mainly focuses hydrolysis reactions of uranium(VI) under an ambient atmosphere leading to colloid formation in near neutral solution using light scattering, UV–Vis and FTIR-ATR studies. UV–Vis and IR spectrum was recorded for uranyl solution at different pH range. U(VI) hydrolyzed colloids were detected and it was confirmed by the appearance of a band at 941 cm?1 in the IR spectra. Light scattering measurements were performed on colloidal U(VI) solutions formed at pH range of 7–8. The average particle diameter was determined as 32–36 nm using dynamic light scattering. Well defined colloidal species are formed with no considerable change in particle size with increasing U(VI) concentration. The weight average molecular weight of colloidal species was predicted as 763 Da by Debye plot. The second virial coefficient (A2) was found to be ?0.1139 ml g?1 Da. The present study confirms that behaviour of U(VI) contradicts conventional Zr(IV), Th(IV) and Pu(IV) solution chemistry. U(VI) polymerization is less extensive and in neutral solutions it forms only oligomers with 2–3 uranyl units.  相似文献   

15.
A novel solid-phase extraction (SPE) system, based on a new sorbent of Nylon6/Polypyrrole (PA6/PPy) core–shell nanofibres mat and a new packing format of SPE disks, is presented in this paper. A series of related parameters that may affect the efficiency, such as the kind of eluent and its volume, the amount of nanofibres mat, ionic strength, pH of the sample, flow rate of the sample and volume of the sample, have been investigated systematically. Under the optimised conditions, the target analyte in 10 mL water samples can be completely extracted by a 3.0 mg PA6/PPy nanofibres mat and easily eluted by 400 µL acetonitrile. Around 20 µL elution was injected directly to HPLC-UV for determination, without further concentration. Besides, the nanofibres mat could be repeatedly used up to six cycles. Satisfactory linearity was achieved in the range of 0.1–40.0 ng/mL with a correlation coefficient of 0.9999. The limit of detection (LOD) (3 S/N) was 0.03 ng/mL, which could meet the determination requirements of atrazine as per the European Union legislation, US. Safe Drinking Water Act and the State Environmental Protection Administration of China. The simple, effective and economic method was proposed for the determination of atrazine in environmental water at trace level. The recoveries ranged from 94.73 to 114.92%, with relative standard deviations (RSDs) of 2.5–4.2%, and were obtained from tap water and lake water samples with atrazine at 2.0 ng/mL, suggesting the actual feasibility of the proposed method in environmental water samples.  相似文献   

16.
A simple, sensitive and reliable method has been developed for separation and preconcentration of chromium (VI) from aqueous samples before determination by electrothermal atomic absorption spectrometry. The method is based on the extraction of the hydrophobic complex of chromium (VI) with ammonium pyrrolidine dithiocarbamate in the coacervates made up of decanoic acid reverse micelles in the water–tetrahydrofuran mixture. Parameters affecting the extraction efficiency of the analyte were studied and optimised. Under the optimum conditions, the linear range, enhancement factor, the limit of detection and limit of quantification were found to be 0.008–0.4 µg L?1, 127, and 1.8 ng L?1 and 6.0 ng L?1, of Cr(VI), respectively. The relative standard deviation at the concentration level of 0.1 µg L?1 Cr(VI) (n = 6) was 4.2%. Total chromium was determined after the oxidation of Cr(III) to Cr(VI) with permanganate in acidic medium. The method was successfully applied to the determination of chromium species in water and human serum samples.  相似文献   

17.
A G-quadruplex-assisted enzyme strand recycling strategy was developed for amplified label-free fluorescent detection of uranyl ion (UO22+).  相似文献   

18.
《Analytical letters》2012,45(4):656-666
By using a resonance light scattering (RLS) technique, a highly sensitive method for protein determination based on the aggregation of Au nanoparticles on protein template is described. For the Au nanoparticles of 15 nm, the detection limit of bovine serum albumin was 5.0 ng/mL and the linear range was 10–300 ng/mL. The experimental results indicated that various metal ions do not interfere with this assay. The proposed RLS assay exhibited lower variation in response signals for the same weight of different proteins and showed satisfactory results when it was used for determination of proteins in human serum.  相似文献   

19.
A highly sensitive and selective fluorescence quenching method has been developed for the determination of trace tungsten in environmental samples using dibromohydroxyphenylfluorone (DBHPF) as an emission reagent. In the presence of 0.04?mol/L of sulphuric acid and acetyltrimethylammonium bromide, tungsten(VI) reacts with DBHPF to form a 1?:?3 red complex within 5.0?min. In order for the DBHPF–tungsten(VI) complex to form, the fluorescence intensity of the reagent solution was quenched linearly by adding 0.1 to 1.0?µg of tungsten(VI) in 25?mL of solution. This was measured at 528?nm with excitation at 495?nm. In this work, a standard addition method was investigated and used for sample analysis. The decrease in fluorescence intensity of the reagent solution (ΔF) was linear for 0?~?0.9?µg of tungsten(VI) in 25?mL of solution, and the detection limit (3?s) of the standard addition method was found to be 0.012?ng/mL of tungsten(VI). The effects of various metal and nonmetal ions were studied in detail. The experiments clearly showed that most foreign ions can be tolerated in considerable amounts; in particular, 50-fold Mo(VI), V(V), Zr(VI) and Ti(IV) do not interfere, and the selectivity of the proposed method is better than other previously described methods. Moreover, the method proposed here is very stable and simple, the fluorescence intensity of the solution can remain almost unchanged for 2.0?h at room temperature, and the method has been used successfully to determine tungsten in environmental samples.  相似文献   

20.
Benzoylthiourea derivatives (N,N-diphenyl-N′-(3-methylbenzoyl)thiourea and diphenyl-N′-(4-methylbenzoyl)thiourea) were impregnated onto silica gel. The preconcentration of uranium(VI) from aqueous solution was investigated. Extraction conditions were optimized in batch method prior to determination by uv–visible absorption spectrometry using arsenazo(III). The optimum pH for quantitative adsorption was found as 3–7. Quantitative recovery of uranium (VI) was achieved by stripping with 0.1 mol L?1 HCl. Equilibration time was determined as 30 min for 99% sorption of U(VI). Under optimal conditions, dynamic linear range of for U(VI) was found as 0.25–10 μg mL?1. The relative standard deviation as percentage and detection limit were 5.0% (n = 10) for 10 μg mL?1 U(VI) solution and 8.7 ng mL?1, respectively. The method was employed to the preconcentration of U(VI) ions in soil and tap water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号