首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W, N co-doped TiO2 nanoparticles were synthesized by a sol-gel method. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), trans- mission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-1R), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectrophotometry (DRS). The results showed that the co- doped photocatalysts were essentially uniform spherical particles with the smallest particle size of 22.5 nm. Compared to un-doped TiO2, N-TiO2 and P-25, the absorption edge of the W, N co-doped TiO2 shifted to longer wavelength and its photocatalytic activity for degradation of methyl orange (MO) under Xe-lamp (350W) was higher.  相似文献   

2.
Nanocrystalline Mn-Zn ferrites (Mno.GZno.4Fe204) with particle size of 12 nm were synthesized hydrotherreally using spent alkaline Zn-Mn batteries, and accompanied by a study of the influencing factors. The nanocrystals were examined by powder X-ray diffraction (XRD) for crystalline phase identification, and scanning electron microscopy (SEM) for grain morphology. The relationship between concentration of Fe(II), Mn(II), and Zn(II) and pH value was obtained through thermodynamic analysis of the Fe(II)-Mn(II)-Zn(II)-NaOH-H2O system. The results showed that all ions were precipitated completely at a pH value of 10-11. The optimal preparation conditions are: co-precipitation pH of 10.5, temperature of 200 ℃ and time of 9 h.  相似文献   

3.
This paper reports the growth of octahedral magnetic Fe3O4 particles from iron powders via a simple alkaline hydrothermal process. The chemical compositions and morphologies of the as-grown Fe3O4 particles were characterized by X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), and scanning electron microscopy (SEM). Structure characterization showed that the phase structure of the prepared particles evolved from α-Fe to pure Fe3O4 with increasing concentration of KOH, indicating the important role of KOH concentration on the formation of the magnetite octahedron. The magnetic properties of samples were also studied by means of a vibrating sample magnetometer (VSM). The pure magnetite Fe3O4 octahedrons exhibited a relatively high saturation magnetization of 96.7 emu/g.  相似文献   

4.
Spherical Sb-doped SnO2 (ATO) nanoparticles were synthesized by the sol–gel route, employing SnCl4·5H2O and SbCl3 as precursors in an ethanol solution. The influences of the calcining temperature and calcining time on the crystallite size, crystallinity, lattice parameters, lattice distortion ratio and the resistivity of the ATO nanoparticles were synthetically investigated. The results suggested that the ATO nanoparticles were crystallized in a tetragonal cassiterite structure of SnO2 with a highly (1 1 0)-plane-preferred orientation. The calcining temperature had a dominating effect on the crystallite size, crystallinity, lattice distortion ratios and resistivity of the ATO. As the calcining temperature increased, the average crystallite size increased, the crystallinity was promoted accompanied by a decrease in the lattice distortion ratio and a corresponding decrease in the resistivity of the ATO. X-ray diffraction (XRD) and Fourier transform infrared spectrophotometer (FTIR) analysis revealed that Sb ions could not entirely supplant the Sn ions in the SnO2 lattice for a calcining time of less than 0.5 h, even at a calcining temperature of 1000 °C. The ATO nanoparticles calcined at 1000 °C for 3.0 h possessed the lowest resistivity of 10.18 Ω cm.  相似文献   

5.
Flame spray pyrolysis (FSP) was utilized to synthesize Ce–Mn oxides in one step for catalytic oxidation of benzene. Cerium acetate and manganese acetate were used as precursors. The materials synthesized were characterized using X-ray diffraction (XRD), N2 adsorption, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and H2-temperature programmed reduction (H2-TPR) and their benzene catalytic oxidation behavior was evaluated. Mn ions were evidenced in multiple chemical states. Crystalline Ce–Mn oxides consist of particles with size <40 nm and specific surface areas (SSA) of 20–50 m2/g. Raman spectrums and H2-TPR results indicated the interaction between cerium and manganese oxides. Flame-made 12.5%-Ce–Mn oxide exhibited excellent catalytic activity at relatively low temperatures (T95 about 260 °C) compared to other Ce–Mn oxides with different cerium-to-manganese ratios. Redox mechanism and strong interaction conform to structure analysis that Ce–Mn strong interaction formed during the high temperature flame process and the results were used to explain catalytic oxidation of benzene.  相似文献   

6.
A green hydrothermal method was proposed for the synthesis of nanocrystalline ZnO2, using Zn5(CO3)2(OH)6 powder and 6 vol% H2O2 aqueous solution as the starting materials. Characterization results from X-ray diffraction, Raman, high resolution transmission electron microscopy and selected area electron diffraction revealed that the products synthesized at 80–120 °C for 6–18 h were pure cubic phase ZnO2 nanocrystals. Room temperature photoluminescence spectra of the as-synthesized ZnO2 nanocrystals displayed a wide and strong emission band in the visible region of about 525–570 nm upon laser excitation at 325 nm, which may have originated from their surface state and other crystal defects.  相似文献   

7.
This paper presents response surface methodology (RSM) as an efficient approach for modeling and optimizing TiO2 nanoparticles preparation via co-precipitation for dye-sensitized solar cell (DSSC) perfor- mance. Titanium (IV) bis-(acetylacetonate) di-isopropoxide (DIPBAT), isopropanol and water were used as precursor, solvent and co-solvent, respectively. Molar ratio of water, aging temperature and calcina- tion temperature as preparation factors with main and interaction effects on particle characteristics and performances were investigated, Particle characteristics in terms of primary and secondary sizes, crys- tal orientation and morphology were determined by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). Band gap energy and power conversion efficiency of DSSCs were used for perfor- mance studies. According to analysis of variance (ANOVA) in response surface methodology (RSM), all three independent parameters were statistically significant and the final model was accurate. The model predicted maximum power conversion efficiency (0.14%) under the optimal condition of molar ratio of DIPBAT-to-isopropanol-to-water of 1 : 10:500, aging temperature of 36 C and calcination temperature of 400 ℃. A second set of data was adopted to validate the model at optimal conditions and was found to be 0.14 ± 0.015%, which was very close to the predicted value. This study proves the reliability of the model in identi(ving the optimal condition for maximum performance.  相似文献   

8.
TiO2@ZrO2@Y2O3 :Eu3+ composite particles with a core-multishell structure were synthesized through the combination of a layer-by-layer (LBL) self-assembly method and a sol-gel process. The obtained sam- ples were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and fluorescence spectropho- tometry. The results showed that the composite particles had a core-multishell structure, spherical morphology, and a narrow size distribution. The presence of a ZrO2 layer on the TiO2 core can effec- tively prevent the reaction between the TiO2 core and a Y203 shell; the temperature for the reaction between the TiO2 core and the Y203 shell in the TiO2@ZrO2@Y2O3 :Eu core-multishell phosphor can be elevated by 300 ℃ compared to that for TiO2@ZrO2:Eu. Upon excitation of the core-multishell particles in the ultraviolet (254 nm), the Eu3+ ion in the Y2O3 :Eu3+ shell shows its characteristic red emission (611 nm, 5D0→7F2), and the photoluminescence (PL) intensity of the phosphor with the core-multishell structure was obviously greater than that of the core-shell TiO2@Y2O3 :Eu phosphor.  相似文献   

9.
(Na, K)NbO3 (KNN) powders were successfully prepared by high temperature mixing method (HTMM) under hydrothermal conditions to study the effect of reaction time on the formation of KNN for three K+/(K+ +Na+) ratios of 0.6, 0.7 and 0.8. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED), to show the change of phase and morphology of the as-prepared particles with the K+/(K+ + Na+) molar ratio in the solution. Pure Na-rich KNN monoclinic phase and pure K-rich KNN orthorhombic phase could be obtained quickly after mixing the solutions at high temperature when the K+/(K+ +Na+) molar ratio was either 0.6 or 0.8. When the K+/(K+ +Na+) molar ratio was 0.7, however, the K-rich KNN orthorhombic phase grain formed first, followed by the Na-rich KNN monoclinic phase grain, with the two phases coexisting in the final product.  相似文献   

10.
Previously we had developed a microfluidic system that can be easily fabricated by bending a stainless-steel tube into large circular loops. In this study, a fast and continuous preparation method for superfine TiO2 nanoparticles (TiO2-NPs) was developed for the aforementioned microfluidic system. The proposed method can yield anatase TiO2 in 3.5 min, in contrast to the traditional hydrothermal reaction method, which requires hours or even days. Different reaction conditions, such as reaction temperature (120–200 °C), urea concentration (20–100 g/L), and tube length (5–20 m) were investigated. X-ray diffraction and Brunauer–Emmett–Teller analysis indicate that the as-prepared TiO2-NPs have crystalline sizes of 4.1–5.8 nm and specific surface areas of 250.7–330.7 m2/g. Transmission electron microscopy images show that these TiO2-NPs have an even diameter of approximately 5 nm. Moreover, because of their small crystalline sizes and large specific surface areas, most of these as-prepared TiO2-NPs exhibit considerably better absorption and photocatalytic performance with methylene blue than commercial P5 TiO2 does.  相似文献   

11.
The immobilization of titanium dioxide (TiO2) on activated carbon fiber (ACF), (TiO2/ACF), was accomplished by sol-gel-adsorption method followed by calcination at temperatures varying from 300 to 600℃ in an argon atmosphere. The material properties were determined by scanning electron microscope (SEM), X-ray diffraction (XRD) and nitrogen adsorption. The photodegradation behavior of TiO2 /ACF was investigated in aqueous solutions using phenol and methyl orange (MO) as target pollutants. The effects of calcination temperature, photocatalyst dosage, initial solution pH and radiation time on the degradation of organic pollutants were studied. It was found that organic pollutants could be removed rapidly from water by the TiO2/ACF photocatalyst and the sample calcined at 500℃ exhibited the highest removal efficiency. Kinetics analysis showed that the photocatalytic degradation reaction can be described by a first-order rate equation. In addition, the possibility of cyclic usage of the photocatalyst was also confirmed. Moreover, TiO2 is tightly bound to ACF and can be easily handled and recovered from water. It can therefore be potentially applied for the treatment of water contaminated by organic pollutants.  相似文献   

12.
Highly uniform Ce(OH)CO3 flowers were successfully prepared in large quantities using a facile hydrothermal approach from the reaction of Ce(NH4)(NO3)4 with CO(NH2)2 at 160 °C in a water–N2H4 complex. The influences of the N2H4 content and temperature on flower formation were discussed. CeO2 flowers were prepared by thermal conversion of Ce(OH)CO3 flowers at 500 °C in air. Both Ce(OH)CO3 and CeO2 flowers were characterized by X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The UV–vis adsorption spectrum of the CeO2 flowers showed that the band gap energy (Eg) is 2.66 eV, which is lower than that of bulk ceria.  相似文献   

13.
To study the influence of back feeding particles on gas-solid flow in the riser, this paper investigated the flow asymmetry in the solid entrance region of a fluidized bed by particle concentration/velocity measurements in a cold square circulating fluidized beds (CFB). The pressure drop distribution along the riser and the saturation carrying capacity of gas for Geldart-B type particles were first analyzed. Under the condition of u0 = 4 m/s and Gs = 21 kg/(m^2 s), the back feeding particles were found to penetrate the lean gas-solid flow near the entrance (rear) wall before reaching the opposite (front) wall, thus leading to a relatively denser region near the front wall in the bottom bed. Higher solid circulation rate (u0 =4 m/s, Gs = 33 kg/(m^2 s)) resulted in a higher particle concentration in the riser. However the back feeding particles with higher momentum increased the asymmetry of the particle concentration/velocity profile in the solid entrance region. Lower air velocity (u0 =3.2 m/s) and Gs =21 kg/(m2 s), beyond the saturation carrying capacity of gas, induced an S-shaped axial solid distribution with a denser bottom zone. This limited the penetration of the back feeding particles and forced the flnidizing air to flow in the central region, thus leading to a higher solid holdup near the rear wall. Under the conditions of uo = 4 m/s and Gs = 21 kg/(m^2 s), addition of coarse particles (dp= 1145 μm) into the bed made the radial distribution of solids more symmetrical.  相似文献   

14.
In the present study hydroxyapatite (HA) nano-hexagonal rods with 70-90 nm diameter and 400-500 nm length are synthesized using a simple sol-gel route with calcium nitrate and potassium dihydrogenphosphate as calcium and phosphorus precursors respectively. Deionized water was used as a diluting media for HA sol preparation and ammonia was used to adjust the pH = 9. After aging, the HA gel was dried at 60 ℃ and calcined at different temperatures ranging from 300 to 700 ℃. The dried and calcined powders were characterized for phase composition using X-ray diffractrometry, elemental dispersive X-ray and Fourier transform infrared spectroscopy. Rietveld analysis showed the calcined HA powders of high purity with a hexagonal unit cell structure. Calcination yielded HA nanopowders of increased particle size and crystallinity with increase in temperature. The particle size and morphology was studied using transmission electron microscopy. The aspect ratio (length to diameter ratio) of HA nanorods was measured to be between 6 and 7.  相似文献   

15.
Graphene/hierarchy structure manganese dioxide (GN/MnO2) composites were synthesized using a simple microwave-hydrothermal method. The properties of the prepared composites were analyzed using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The electrochemical performances of the composites were analyzed using cyclic voltammetry, electrochemical impedance spectrometry (EIS), and chronopotentiometry. The results showed that GN/MnO2 (10 wt% graphene) displayed a specific capacitance of 244 F/g at a current density of 100 mA/g. An excellent cyclic stability was obtained with a capacity retention of approximately 94.3% after 500 cycles in a 1 mol/L Li2SO4 solution. The improved electrochemical performance is attributed to the hierarchy structure of the manganese dioxide, which can enlarge the interface between the active materials and the electrolyte. The preparation route provides a new approach for hierarchy structure graphene composites; this work could be readily extended to the preparation of other graphene-based composites with different structures for use in energy storage devices.  相似文献   

16.
A hydrothermal method was successfully used for synthesis of CuO/ZnO/Al2O3 (CZA) nanopowder with atomic ratio of 6:3:1. The effect of crystallization time (3, 6, 9, and 12 h) on physicochemical properties of nanopowder was investigated. Nanopowders were characterized using XRD, FESEM, EDX, FTIR, TG, and BET techniques. The XRD patterns confirmed metal oxides formation and their good crystallinity with average crystallite size of 20 nm as obtained by the Scherrer equation. Relative crystallinity was shown to increase with increasing crystallization time. In agreement with XRD results, FESEM images also illustrated nanosized particles. EDX mapping indicated homogenous dispersion of elements. BET specific surface area analysis showed acceptable surface area for CZA nanopowder. FTIR spectroscopy confirmed metal oxides formation during hydrothermal and calcination processing. TG results illustrated high thermal stability of the synthesized nanopowders. TG-DTG and FTIR analyses were used to propose a reaction mechanism for nanopowder formation during processing. Physicochemical characterization showed optimal crystallization time to be 6 h.  相似文献   

17.
A simple sol–gel route was demonstrated for the synthesis of LiNb0.6Ti0.5O3 (M-phase) powder, using cheap and manageable starting materials at a relatively low temperature. The phase transitions in both chemical and solid-state processes were studied by X-ray diffraction (XRD) in detail. The results showed that in the sol–gel process the anatase TiO2 phase first appeared at 400 °C and then LiNbO3 solid solution (LiNbO3 ss) emerged at 500 °C. When calcined to 600 °C, the M-phase started to appear along with the decrease of TiO2 and LiNbO3 ss. Single M-phase could be formed at 700 °C, which is 300 °C lower than that by the traditional solid-state method. A plausible evolution mechanism of the as-synthesized powder in calcination was proposed. The produced powder has potential applications in microelectronics systems.  相似文献   

18.
Mesoporous γ-AlOOH@Fe3O4 magnetic nanomicrospheres were synthesized using superparamagnetic Fe3O4 nanoparticles as the core and aluminum isopropoxide (AIP) as the aluminum source. The obtained magnetic nanomicrospheres were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption–desorption and vibrating sample magnetometry (VSM). The effects of preparation parameters such as hydrolysis time of AIP, concentration of AIP and coating layer number on microspheres were investigated. The results indicated that the mesoporous γ-AlOOH@Fe3O4 magnetic nanomicrospheres consisted of a mesoporous γ-AlOOH shell and a Fe3O4 magnetic core. The diameter of γ-AlOOH@Fe3O4 nanomicrospheres was about 200 nm, the thickness of mesoporous γ-AlOOH shell was about 5 nm and the average pore size was 3.8 nm. The thickness of the mesoporous γ-AlOOH shell could be controlled via layer-by-layer coating times. The formation mechanism of the mesoporous γ-AlOOH shell involved a “chemisorption–hydrolysis” process.  相似文献   

19.
Precursors with NiCO3·2Ni(OH)2·2H2O- and Fe2O3·nH2O-coated alumina, graphite and cenosphere were synthesized by precipitation using ferrous sulfate, nickel sulfate, ammonium bicarbonate, alumina, graphite and cenosphere as the main starting materials. Magnetic γ-FeNi-coated alumina, graphite and cenosphere core–shell structural microspheres were subsequently prepared by thermal reduction of the as-prepared precursors at 600 °C for 2 h. Precipitation parameters, e.g. concentration of ceramic micropowders (10 g/L), sulfate solution (0.2 mol/L), rate of adding reactants (3 mL/min) and pH value were optimized by a trial-and-error method. Powders of the precursors and the resulting coating of γ-FeNi with grain size below 40 nm on alumina, graphite and cenosphere microspheres were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). The magnetic properties of the nanosize γ-FeNi-coated alumina, graphite and cenosphere microspheres were measured by vibrating sample magnetometer (VSM). The results show that the core–shell structural γ-FeNi-coated ceramic microspheres exhibited higher coercivity than pure γ-FeNi powders, indicating that these materials can be used for high-performance functional materials and devices.  相似文献   

20.
Uniform nano-sized calcium hydroxide (Ca(OH)2) monocrystal powder was synthesized from calcium oxide in a surfactant solution via a digestion method by decreasing the surface tension of the reaction system to control the growth of crystalline Ca(OH)2. The Ca(OH)2 monocrystal powder samples were characterized by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), and Fourier transform-infrared spectroscopy (FT-IR). The NOx adsorption ability of the samples was evaluated, and the influence of various types and concentrations of surfactants on powder agglomeration and then the specific surface area in the precipitation process were studied. The specific surface area of the samples was found as high as 58 m2/g and 92 m2/g and the particle size, 300–400 nm and 200–300 nm in the presence of 10 wt% PEG600 and 0.086 mL/L SDS at a reaction time of 5 h, respectively. The product has an exceptionally strong adsorption ability for NOx, which makes it a highly promising adsorbent for emission control and air purification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号