首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advancements in the fabrication of microfluidic and nanofluidic devices and the study of liquids in confined geometries rely on understanding the boundary conditions for the flow of liquids at solid surfaces. Over the past ten years, a large number of research groups have turned to investigating flow boundary conditions, and the occurrence of interfacial slip has become increasingly well-accepted and understood. While the dependence of slip on surface wettability is fairly well understood, the effect of other surface modifications that affect surface roughness, structure and compliance, on interfacial slip is still under intense investigation. In this paper we review investigations published in the past ten years on boundary conditions for flow on complex surfaces, by which we mean rough and structured surfaces, surfaces decorated with chemical patterns, grafted with polymer layers, with adsorbed nanobubbles, and superhydrophobic surfaces. The review is divided in two interconnected parts, the first dedicated to physical experiments and the second to computational experiments on interfacial slip of simple (Newtonian) liquids on these complex surfaces. Our work is intended as an entry-level review for researchers moving into the field of interfacial slip, and as an indication of outstanding problems that need to be addressed for the field to reach full maturity.  相似文献   

2.
The hydrodynamic drainage force of a Newtonian aqueous electrolyte solution squeezed between two surfaces of different wettability was measured using the AFM colloidal probe technique. The surface hydrophobicity, roughness, polarity and approach velocity, and thus the shearing rate of the liquid, were controlled. A direct relationship between the mobility of the aqueous electrolyte solution close to the surfaces and the hydrophobicity of the surfaces was not established. We predict that the mobility of the liquid depends in a more complex fashion on the polarity and charge of the surfaces and on the properties of the electrolyte.  相似文献   

3.
The kinetic friction force and the adhesion force of Bacillus thuringiensis spores on planar surfaces in atmospheric systems were studied using atomic force microscopy. The influence of relative humidity (RH) on these forces varied for different surface properties including hydrophobicity, roughness, and surface charge. The friction force of the spore was greater on a rougher surface than on mica, which is atomically flat. As RH increases, the friction force of the spores decreases on mica whereas it increases on rough surfaces. The influence of RH on the interaction forces between hydrophobic surfaces is not as strong as for hydrophilic surfaces. The friction force of the spore is linear to the sum of the adhesion force and normal load on the hydrophobic surface. The poorly defined surface structure of the spore and the adsorption of contaminants from the surrounding atmosphere are believed to cause a discrepancy between the calculated and measured adhesion forces.  相似文献   

4.
The hydrophobic surface properties of structured poly-(p-xylylene) (PPX) films, as measured by water wettability, are studied as functions of surface chemistry, film composition, and surface roughness. We demonstrate the fabrication of very hydrophobic surfaces and control over adhesion properties via nanoscale modulation of roughness, changes in composition, and alteration of the surface chemistry of PPX films. The formation of superhydrophobic surfaces through the chemisorption of fluoroalkylsiloxane coatings to hydroxyl sites created on the nanostructured PPX surface is also illustrated. The ability to control both hydrophobicity and adhesion using nanostructured PPX films is a promising development because it may lead to a new generation of coatings with applicability ranging from self-cleaning surfaces to robotics.  相似文献   

5.
Superhydrophobic surfaces in Wenzel and metastable wetting state were prepared and the conversion of such surfaces to ultraphobic surfaces was reported by the application of a fine-scale roughness. Silicon nitride substrates with hexagonally arranged pillars were prepared by micromachining. The two-scale roughness was achieved by coating these substrates with 60 nm silica nanoparticles. The surface was made hydrophobic by silanization with octadecytrichlorosilane (OTS). Wettability studies of the silicon nitride flat surface, silicon nitride pillars, and the surfaces with two-scale roughness showed that a two-scale roughness can effectively improve the hydrophobicity of surfaces with a higher apparent contact angle and reduced contact angle hysteresis when the original rough surface was in a metastable or Wenzel state. This study shows the pathway of converting a metastable hydrophobic surface to an ultraphobic surface by the introduction of a fine-scale roughness, which adds to the literature a new aspect of fine-scale roughness effect.  相似文献   

6.
Nanostructured particle coated surfaces, with hydrophobized particles arranged in close to hexagonal order and of specific diameters ranging from 30 nm up to 800 nm, were prepared by Langmuir-Blodgett deposition followed by silanization. These surfaces have been used to study interactions between hydrophobic surfaces and a hydrophobic probe using the AFM colloidal probe technique. The different particle coated surfaces exhibit similar water contact angles, independent of particle size, which facilitates studies of how the roughness length scale affects capillary forces (previously often referred to as "hydrophobic interactions") in aqueous solutions. For surfaces with smaller particles (diameter < 200 nm), an increase in roughness length scale is accompanied by a decrease in adhesion force and bubble rupture distance. It is suggested that this is caused by energy barriers that prevent the motion of the three-phase (vapor/liquid/solid) line over the surface features, which counteracts capillary growth. Some of the measured force curves display extremely long-range interaction behavior with rupture distances of several micrometers and capillary growth with an increase in volume during retraction. This is thought to be a consequence of nanobubbles resting on top of the surface features and an influx of air from the crevices between the particles on the surface.  相似文献   

7.
Although hydrophobic forces are of great relevance in biological systems, quantifying these forces on complex biosurfaces such as cell surfaces has been difficult owing to the lack of appropriate, ultrasensitive force probes. Here, chemical force microscopy (CFM) with hydrophobic tips was used to measure local hydrophobic forces on organic surfaces and on live bacteria. On organic surfaces, we found an excellent correlation between nanoscale CFM and macroscale wettability measurements, demonstrating the sensitivity of the method toward hydrophobicity and providing novel insight into the nature of hydrophobic forces. Then, we measured hydrophobic forces associated with mycolic acids on the surface of mycobacteria, supporting the notion that these hydrophobic compounds represent an important permeation barrier to drugs.  相似文献   

8.
Superhydrophobic surfaces with expanded wetting behaviors, like tunable adhesion, hybrid surface hydrophobicity and smart hydrophobic switching have attracted increasing attention due to their broad applications. Herein, the construction methods, mechanisms and advanced applications of special superhydrophobicity are reviewed, and hydro/superhydrophobic modifications are categorized and discussed based on their surface chemistry, and topographic design. The formation and maintenance of special superhydrophobicity in the metastable state are also examined and explored. In addition, particular attention is paid to the use of special wettability in various applications, such as membrane distillation, droplet-based electricity generators and anti-fogging surfaces. Finally, the challenges for practical applications and future research directions are discussed.  相似文献   

9.
Engineered surfaces with controlled hydrophilic/ hydrophobic character have been fabricated by tailoring the substrate topography and chemistry. In this method, the substrate to be treated was first coated by a photoresist, which was then surface-roughened using SF6 plasma etching. The resulting rough texture was then transferred to the underlying silicon surface by over-etching of the photoresist. At this point, the topographically modified surface was modified chemically by controlled deposition of a thin polymer layer using plasma processing. In this way, both the surface texture and the surface chemistry could be varied independently, producing surfaces with variable wetting character, including super-hydrophilicity and super-hydrophobicity, depending on the choice of plasma polymer deposited. Chemical characterization demonstrates a correlation between the surface chemistry and the wettability of the samples after etching. The surface elementary composition contained more C-F groups as the measured contact angle increased, indicating that the change of wettability is due to both the roughness and the surface energy of the deposited photoresist. In the case of materials deposited on the plasma-treated rough surfaces, the strengthening of the wetting character is only due to the created surface roughness, as XPS analyses showed no significant chemical difference as compared to the flat polymer.  相似文献   

10.
To enhance our understanding of liquids in contact with rough surfaces, a systematic study has been carried out in which water contact angle measurements were performed on a wide variety of rough surfaces with precisely controlled surface chemistry. Surface morphologies consisted of sandblasted glass slides as well as replicas of acid-etched, sandblasted titanium, lotus leaves, and photolithographically manufactured golf-tee shaped micropillars (GTMs). The GTMs display an extraordinarily stable, Cassie-type hydrophobicity, even in the presence of hydrophilic surface chemistry. Due to pinning effects, contact angles on hydrophilic rough surfaces are shifted to more hydrophobic values, unless roughness or surface energy are such that capillary forces become significant, leading to complete wetting. The observed hydrophobicity is thus not consistent with the well-known Wenzel equation. We have shown that the pinning strength of a surface is independent of the surface chemistry, provided that neither capillary forces nor air enclosure are involved. In addition, pinning strength can be described by the axis intercept of the cosine-cosine plot of contact angles for rough versus flat surfaces with the same surface chemistries.  相似文献   

11.
The tunable surface properties of Al-incorporated c-Si and/or homogeneous c-Si (i.e., absorber layer) thin films are investigated with the help of 3D surface topography, statistical analysis, and contact angle measurement. The absorber layers are developed by ion irradiation on c-Al/a-Si films, which results the crystallization of Si in bilayer films, and the top unreacted Al layers were chemically etched off by wet selective etching. The 3D surface topography and statistical analysis is performed on the atomic force microscopy images of the absorber film surface. The analyses suggest that the surfaces are highly complex and irregular isotropic. The surface roughness and irregularity is found to be decreasing with increasing ion fluence. Variation of contact angle with statistical parameters suggest that the wettability of the absorber surface strongly depends on the surface statistical parameters. The surfaces are hydrophobic in nature, and hydrophobicity is found to decrease with increasing ion fluence. The hydrophobic nature of low reflective absorber surface suggests that the film may be useful as a photon absorber layer for advance solar cell applications.  相似文献   

12.
Kelvin probe force microscopy (KPFM) and atomic force microscopy (AFM) are employed to probe the surface potential and topography of octadecyltrichlorosilane [OTS, CH3(CH2)17SiCl3] self-assembled monolayers (SAMs) on oxidized Si(100) and polycrystalline silicon surfaces as a function of deposition temperature and substrate roughness with particular attention paid to the monitoring of SAM adsorption on highly rough surfaces. In these studies, it is found that the surface potential magnitude of the adsorbed layer is larger for monolayers formed in the liquid-condensed (LC) phase than for those formed in the liquid-expanded (LE) phase. Experiments on individual islands in the LC phase show that surface potential and monolayer thickness increase with increasing island size; islands larger than about 1.5 microm reach maximum potential and height values of 48+/-4 mV and 2.7+/-0.1 nm, with respect to the underlying oxidized surface. It is also shown that KPFM is suitable for the study of monolayer adsorption on polycrystalline surfaces, for which preexisting surface texture makes the use of traditional scanning probe techniques for molecular recognition difficult. In these scenarios it is shown that OTS growth occurs preferentially along grain boundaries in fingerlike patterns having a molecular arrangement comparable to that of LC phase islands on atomically smooth silicon. These findings indicate that surface potential measurements provide a highly accurate, local means of probing monolayer morphology on rough surfaces encountered in many applications.  相似文献   

13.
Using a surface forces apparatus (SFA) and an atomic force microscope (AFM) we have studied the effects of surface roughness (root-mean-square (RMS) roughness between 0.3 and 220 nm) on the "contact mechanics", which describes the deformations and loading and unloading adhesion forces, of various polymeric surfaces. For randomly rough, moderately stiff, elastomeric surfaces, the force-distance curves on approach and separation are nearly reversible and almost perfectly exponentially repulsive, with an adhesion on separation that decreases only slightly with increasing RMS. Additionally, the magnitude of the preload force is seen to play a large role in determining the measured adhesion. The exponential repulsion likely arises from the local compressions (fine-grained nano- or submicron-scale deformations) of the surface asperities. The resulting characteristic decay lengths of the repulsion scale with the RMS roughness and correlate very well with a simple finite element method (FEM) analysis based on actual AFM topographical images of the surfaces. For "patterned" surfaces, with a nonrandom terraced structure, no similar exponential repulsion is observed, suggesting that asperity height variability or random roughness is required for the exponential behavior. However, the adhesion force or energy between two "patterned" surfaces fell off dramatically and roughly exponentially as the RMS increased, likely owing to a significant decrease in the contact area which in turn determines their adhesion. For both types of rough surfaces, random and patterned, the coarse-grained (global, meso- or macroscopic) deformations of the initially curved surfaces appear to be Hertzian.  相似文献   

14.
Correlations between contact angle, a measure of the wetting of surfaces, and slip length are developed using nonequilibrium molecular dynamics for a Lennard-Jones fluid in Couette flow between graphitelike hexagonal-lattice walls. The fluid-wall interaction is varied by modulating the interfacial energy parameter epsilonr=epsilonsfepsilonff and the size parameter sigmar=sigmasfsigmaff, (s=solid, f=fluid) to achieve hydrophobicity (solvophobicity) or hydrophilicity (solvophilicity). The effects of surface chemistry, as well as the effects of temperature and shear rate on the slip length are determined. The contact angle increases from 25 degrees to 147 degrees on highly hydrophobic surfaces (as epsilonr decreases from 0.5 to 0.1), as expected. The slip length is functionally dependent on the affinity strength parameters epsilonr and sigmar: increasing logarithmically with decreasing surface energy epsilonr (i.e., more hydrophobic), while decreasing with power law with decreasing size sigmar. The mechanism for the latter is different from the energetic case. While weak wall forces (small epsilonr) produce hydrophobicity, larger sigmar smoothes out the surface roughness. Both tend to increase the slip. The slip length grows rapidly with a high shear rate, as wall velocity increases three decades from 100 to 10(5) ms. We demonstrate that fluid-solid interfaces with low epsilonr and high sigmar should be chosen to increase slip and are prime candidates for drag reduction.  相似文献   

15.
The hydrophobic (HB) interaction plays a critical role in many colloidal and interfacial phenomena, biophysical and industrial processes. Surface hydrophobicity, characterized by the water contact angle, is generally considered the most dominant parameter determining the HB interaction. Herein, we quantified the HB interactions between air bubbles and a series of hydrophobic surfaces with different nanoscale structures and surface chemistry in aqueous media using a bubble probe atomic force microscopy (AFM). Surprisingly, it is discovered that surfaces of similar hydrophobicity can show different ranges of HB interactions, while surfaces of different hydrophobicity can have similar ranges of HB interaction. The increased heterogeneity of the surface nanoscale structure and chemistry can effectively decrease the decay length of HB interaction from 1.60 nm to 0.35 nm. Our work provides insights into the physical mechanism of HB interaction.  相似文献   

16.
The hydrophobic (HB) interaction plays a critical role in many colloidal and interfacial phenomena, biophysical and industrial processes. Surface hydrophobicity, characterized by the water contact angle, is generally considered the most dominant parameter determining the HB interaction. Herein, we quantified the HB interactions between air bubbles and a series of hydrophobic surfaces with different nanoscale structures and surface chemistry in aqueous media using a bubble probe atomic force microscopy (AFM). Surprisingly, it is discovered that surfaces of similar hydrophobicity can show different ranges of HB interactions, while surfaces of different hydrophobicity can have similar ranges of HB interaction. The increased heterogeneity of the surface nanoscale structure and chemistry can effectively decrease the decay length of HB interaction from 1.60 nm to 0.35 nm. Our work provides insights into the physical mechanism of HB interaction.  相似文献   

17.
Considerable effort has been expended on theoretical studies of superhydrophobic surfaces with two-tier (micro and nano) roughness, but experimental studies are few due to the difficulties in fabricating such surfaces in a controllable way. The objective of this work is to experimentally study the wetting and hydrophobicity of water droplets on two-tier rough surfaces for comparison with theoretical analyses. To compare wetting on micropatterned silicon surfaces with wetting on nanoscale roughness surfaces, two model systems are fabricated: carbon nanotube arrays on silicon wafers and carbon nanotube arrays on carbon nanotube films. All surfaces are coated with 20 nm thick fluorocarbon films to obtain low surface energies. The results show that the microstructural characteristics must be optimized to achieve stable superhydrophobicity on microscale rough surfaces. However, the presence of nanoscale roughness allows a much broader range of surface design criteria, decreases the contact angle hysteresis to less than 1 degrees , and establishes stable and robust superhydrophobicity, although nanoscale roughness could not increase the apparent contact angle significantly if the microscale roughness dominates.  相似文献   

18.
We have demonstrated that the surface wettability of negatively charged polyimide films could be tuned by electrostatic self-assembly of ionic liquids. The water contact angles of the polyimide films varied in the range 27-80 degrees for 13 different ionic liquids based on imidazolium and ammonium salts. The surface morphology of the resulting surfaces was characterized using atomic force microscopy. The results revealed that the assembly of longer-substituent cations was characterized by the formation of spherical nanoparticles that were formed due to sequent aggregation of cations on those electrostatically assembled ones via hydrophobic interaction. In this case, the counteranions are present in the assembled layers and the wettability is accordingly affected. Whereas for shorter-substituent cations, no aggregates were formed due to the less hydrophobic interaction than the electrostatic repulsive interaction between the cations, and the counteranions were absent from the assembled layers. This method can also be utilized to quantify the hydrophobicity of various ionic liquids.  相似文献   

19.
In this work atomic force microscopy (AFM) was applied to study the wettability of mica and graphite modified with surfactant dodecyltrimethylammonium bromide (DTAB) at varying DTAB concentrations (below the cmc) and adsorption time. The coverage states of DTAB on surfaces were analyzed from the AFM images, while the contact angle measurement was made for the wettability of DTAB-modified surfaces. The experimental results have shown that the adsorption aggregates formed as needle-like dots covering on the mica surface with the surfactant concentration of 10?6–10?4?mol/L. The coverage of DTAB aggregates increased with the increasing concentration, leading to a strong hydrophobicity on the surfaces. However, the large aggregates which might be caused by bilayer adsorption of surfactant occurred on mica surface at surfactant concentration of 10?3?mol/L, resulting in the reverse of the wettability as the adsorption time extended. In the case of hydrophobic graphite, DTAB aggregates mainly formed as stripe covering on the surfaces, leading to the reduction of hydrophobicity. This reduction became stronger as more DTAB aggregates covered on graphite surfaces.  相似文献   

20.
Self‐cleaning surfaces have received a great deal of attention, both in research studies and commercial applications. Both transparent and non‐transparent self‐cleaning surfaces are highly desirable as they offer many advantages, and their potential applications are endless. The self‐cleaning mechanism can be seen in nature. The Lotus flower, a symbol of purity in Asian cultures, grows in muddy waters, but it stays clean and untouched by dirt, organisms, and pollutants. The Lotus leaf self‐cleaning surface is hydrophobic and rough, showing a multi‐layer morphology of nanoscaled roughness. While hydrophobicity produces a high contact angle, the surface morphology reduces the adhesion of water drops to the surface, which slides easily across the leaf surface carrying the dirt particles with them. Different ultra‐hydrophobic, non‐transparent, and transparent coatings, for potential self‐cleaning applications, were produced on polycarbonate (PC) substrates, using hydrophobic chemistry and different configurations of roughening micro‐ and nano‐particles. However, in most cases, these coatings present low adhesion and durability. The stability and durability of the ultra‐hydrophobic surfaces is of key importance for potential, commercially viable, self‐cleaning applications thus durability and stability enhancement of such coatings was attempted by different methods, evaluated, and eventually improved using a solvent‐bonding technique. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号