首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 470 毫秒
1.
The crystal structure of the ζ2‐phase Al3Cu4‐δ was determined by means of X‐ray powder diffraction: a = 409.72(1) pm, b = 703.13(2) pm, c = 997.93(3) pm, space group Imm2, Pearson symbol oI24‐3.5, RI = 0.0696. ζ2‐Al3Cu4‐δ forms a distinctive a × √3a × 2c superstructure of a metal deficient Ni2In‐type‐related structure. The phase is meta‐stable at ambient temperature. Between 400 °C and 450 °C it decomposes into ζ1‐Al3Cu4 and η2‐AlCu. Entropic contributions to the stability of ζ2‐Al3Cu4‐δ are reflected in three statistically or partially occupied sites.  相似文献   

2.
An Alternative Method for Preparation of Bi2Sr2CaCu3Ox, YBa2Cu3O7?δ, and YBa2Cu3?xMxO7?δ (M ? Ni, Ag and x ≤ 33 Mol%) Oxidation of quenched melts of metals in a well defined argon/oxygen atmosphere has been found as an alternative method to prepare hight purity samples of Bi2Sr2CaCu2Ox without Pb-stabilization. A special equipment for the oxidation of powder samples will be described. By our new method it is also possible to prepare YBa2Cu3O7?δ and derivatives of this compound, where Cu is substituted by high amounts of Ni or Ag.  相似文献   

3.
A hypothesis is proposed that tryies to correlate the observed structure transitions of YBa2Cu3O7‐x for x from 0 to 1 with measured super‐conductivity and electric properties.  相似文献   

4.
Based on the EHMO approach, an approximate treatment of electronic energy-band structures is suggested. By employing this treatment, computations of the band structures for the Al-doped superconductors YBa2Cu3–xAlxO7 + δ were carried out. It is shown by analysis of the band structures and the density of states that the 2D Cu–O planes in the Y? Ba–Cu? O superconducting system play a dominant role in superconductivity, whereas the 1D Cu? O ribbons have indirectly an influence on superconductivity through the connection of the O(4) atoms to two Cu? O planes. © 1994 John Wiley & Sons, Inc.  相似文献   

5.
Solid state reactions at 925°C between the high-T c ceramic superconductor YBa2Cu3O7?δ and La2O3 and SrCO3, respectively, mixed in various molar ratiosr=MeOn/YBa2Cu3O7?δ, were studied using X-ray powder diffraction and scanning electron microscopy. The reaction between YBa2Cu3O7?δ and La2O3 yielded (La1?xBax)2CuO4?δ, withx≈0.075?0.10. La2?xBa1+xCu2O6?δ, withx≈0.2?0.25 and La-doped (Y1?xLax)2BaCuO5, withx≈0.10?0.15. Forr=3.0, Y-doped La2BaCuO5 resulted also. The reaction between YBa2Cu3O7?δ and SrCO3 yielded (Sr1?zBaz)2CuO3, withz≈0.1, Y2(Ba1?zSrz)CuO5, withz=0.1?0.15, and a nonsuperconducting compound with an approximate composition of Y(Ba0.5Sr0.5)5Cu3.5O10±δ. At values ofr≤2.0, unsubstituted YBa2Cu3O7?delta was found in the reaction products.  相似文献   

6.
The oxidant‐free dehydrogenation of n‐pentanol over copper based catalysts was investigated in this paper. The effect of metal modification on the activity and stability of the copper catalyst supported on γ‐Al2O3 and La2O3 (Cu/γ‐Al2O3‐La2O3) was clarified and a Cr modified Cu/Al2O3‐La2O3 (Cu‐Cr/γ‐Al2O3‐La2O3) showed the best catalytic performance. The conversion of n‐pentanol was 70.0% and the selectivity for n‐pentanal increased to 97.1% over Cu‐Cr/γ‐Al2O3‐La2O3. X‐ray diffraction and temperature programmed reduction of H2 indicated that the addition of Cr favors the formation and reduction of the copper oxide, and the dispersion of the active Cu0 species, accounting for the good activity and stability of this catalyst. Furthermore, the lower amount of acidic sites in Cu‐Cr/γ‐Al2O3‐La2O3 is suggested to suppress the dehydration in oxidant‐free dehydrogenation of n‐pentanol, accounting for the higher selectivity for n‐pentanal.  相似文献   

7.
In the two title copper(II) complexes, [CuL(C5H7O2)]n, (I), and [CuL′(C5H7O2)], (II), respectively, where HL is 4‐hydroxy‐3‐methoxybenzaldehyde picoloylhydrazone, C14H12N3O3, and HL′ is 4‐methoxybenzaldehyde picoloylhydrazone, C14H12N3O2, the CuII ions display a highly Jahn–Teller‐distorted octahedral and a square‐planar coordination geometry, respectively. In complex (I), two neighbouring CuII atoms are bridged by L and acetylacetonate, alternately, giving rise to a one‐dimensional chain of CuN2O4 octahedra interconnected by these two ligands along the a axis. In addition, the hydroxy H atom of the vanillin group connects to the carboxyl O atom of the adjacent chain via an O—H...O hydrogen bond, giving rise to a three‐dimensional supramolecular assembly. Complex (II) displays a discrete structure.  相似文献   

8.
The bulk superconducting YCa2Cu3O7−δ compounds are prepared at an ordinary pressure of oxygen by conventional solid-state reaction method. The formation of sample is tested by means of XRD and is studied for their ac susceptibility below room temperature up to 77.5 K. The samples are found single-phase orthorhombic structure and found superconducting at 83.5 K. It is shown that the analysis is consistent with published data on YBa2Cu3O7−δ oxide superconductor.  相似文献   

9.
An appropriate treatment called “Vacuum-Oxygen Cycle” (V.O.C.) has been carried out in order to obtain highly densified YBa2Cu3O7-δceramics. The obtained materials exhibit a homogeneous oxygen distribution and their feature have been characterized using relevant physical measurements. Preliminary electrochemical experiments have been performed and this treatment seems to improve their superconducting properties.  相似文献   

10.
SC-MEH-MO calculations have been carried out on select clusters of the YBa2Cu3O7 lattice structure. The results of an earlier computation on small CuO clusters are presented for comparison with the finding obtained on a YBa2Cu8O26+ extended cluster. In the latter, the antiferromagnetic coupling of singularly occupied Cu and O levels is analyzed.  相似文献   

11.
The title compound, [Cu(C9H13N5O2)(CH4O)](NO3)2, consists of square‐planar cationic complex units where the CuII centre is coordinated by an N,N′,O‐tridentate pyridoxal–aminoguanidine Schiff base adduct and a methanol molecule. The tridentate ligand is a zwitterion exhibiting an almost planar conformation. The dihedral angles between the mean planes of the pyridoxal ring and the six‐ and five‐membered chelate rings are all less than 2.0°. The charge on the complex cation is neutralized by two nitrate counter‐ions. Extensive N—H...O and C—H...O hydrogen bonding connects these ionic species and leads to the formation of layers. The pyridoxal hydroxy groups are the only fragments that deviate significantly from the flat layer structure; these groups are involved in O—H...O hydrogen bonding, connecting the layers into a three‐dimensional crystal structure.  相似文献   

12.
We propose a reaction model for the synthesis of YBa2Cu4O8 under normal pressure conditions, which contains 4 partial reaction steps. In a first step bariumnitrate and copperoxide react to Ba2Cu3O5+δ. This substance will be formed for each mixtures Ba:Cu=2∶3...3∶2. The following two partial reaction steps are connected to Ba2Cu3O5+δ, which reacts with Y2O3 and CuO to YBa2Cu4O8 or decomposes to BaCuO2 and CuO. In a last step parts of BaCuO2 reacts with Y2O3 and CuO to YBa2Cu4O8.  相似文献   

13.
Two new series of Boc‐N‐α,δ‐/δ,α‐ and β,δ‐/δ,β‐hybrid peptides containing repeats of L ‐Ala‐δ5‐Caa/δ5‐Caa‐L ‐Ala and β3‐Caa‐δ5‐Caa/δ5‐Caa‐β3‐Caa (L ‐Ala = L ‐alanine, Caa = C‐linked carbo amino acid derived from D ‐xylose) have been differentiated by both positive and negative ion electrospray ionization (ESI) ion trap tandem mass spectrometry (MS/MS). MSn spectra of protonated isomeric peptides produce characteristic fragmentation involving the peptide backbone, the Boc‐group, and the side chain. The dipeptide positional isomers are differentiated by the collision‐induced dissociation (CID) of the protonated peptides. The loss of 2‐methylprop‐1‐ene is more pronounced for Boc‐NH‐L ‐Ala‐δ‐Caa‐OCH3 (1), whereas it is totally absent for its positional isomer Boc‐NH‐δ‐Caa‐L ‐Ala‐OCH3 (7), instead it shows significant loss of t‐butanol. On the other hand, second isomeric pair shows significant loss of t‐butanol and loss of acetone for Boc‐NH‐δ‐Caa‐β‐Caa‐OCH3 (18), whereas these are insignificant for its positional isomer Boc‐NH‐β‐Caa‐δ‐Caa‐OCH3 (13). The tetra‐ and hexapeptide positional isomers also show significant differences in MS2 and MS3 CID spectra. It is observed that ‘b’ ions are abundant when oxazolone structures are formed through five‐membered cyclic transition state and cyclization process for larger ‘b’ ions led to its insignificant abundance. However, b1+ ion is formed in case of δ,α‐dipeptide that may have a six‐membered substituted piperidone ion structure. Furthermore, ESI negative ion MS/MS has also been found to be useful for differentiating these isomeric peptide acids. Thus, the results of MS/MS of pairs of di‐, tetra‐, and hexapeptide positional isomers provide peptide sequencing information and distinguish the positional isomers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
The compositions in the YBa2−xLaxCu3O7−δ (0x0.2) system were prepared by the solid state reaction, employing a novel high-temperature oxygen sintering route. The modified sintering route yields dense slab like microstructures with large grains. The decomposition (incongruent melting) temperature of the YBa2Cu3O7−δ (Y-123) phase was found to shift to higher temperatures with increasing oxygen partial pressure and lanthanum content. Structure remained orthorhombic up to x=0.2 with a decrease in the orthorhombic strain ((ba)/b). Iodometric titration indicated a systematic increase in the oxygen content with increasing lanthanum content. Thermo-gravimetric studies in various oxygen partial pressures revealed that the oxygen diffusion in to the YBa2Cu3O7−δ (δ>0.5) lattice is an exothermic event and takes place at temperatures not less than 573 K. High-temperature thermal-expansion measurements in air indicated that the nonlinearity in thermal expansion behaviour was reduced by the substitution of lanthanum.  相似文献   

15.
A new polymorph of volborthite [tricopper(II) divanadium(V) heptaoxide dihydroxide dihydrate], Cu3V2O7(OH)2·2H2O, has been discovered in a single crystal prepared by hydrothermal synthesis. X‐ray analysis reveals that the monoclinic structure has the space group C2/c at room temperature, which is different from that of the previously reported C2/m structure. Both structures have Cu3O6(OH)2 layers composed of edge‐sharing CuO4(OH)2 octahedra, with V2O7 pillars and water molecules between the layers. The Cu atoms occupy two and three independent crystallographic sites in the C2/m and C2/c structures, respectively, likely giving rise to different magnetic interactions between CuII spins in the kagome lattices embedded in the Cu3O6(OH)2 layers.  相似文献   

16.
In the title complex, [Cu2(C10H2O8)(C10H8N2)2]n, the CuII cation has a four‐coordinated environment, completed by two carboxyl O atoms belonging to two 1,2,4,5‐benzene­tetra­carboxyl­ate anions (TCB4−) and two N atoms from one 2,2′‐bi­pyridine (2,2′‐bipy) ligand, forming a distorted square‐planar geometry. The [Cu(2,2′‐bipy)]2+ moieties are bridged by TCB4− anions, which lie about inversion centres, forming an infinite one‐dimensional coordination polymer with a double‐chain structure along the a axis. A two‐dimensional network structure is formed via a face‐to‐face π–π interaction between the 2,2′‐bipy rings belonging to two adjacent double chains, at a distance of approximately 3.56 Å.  相似文献   

17.
The title compound, [Cu3(C3H5O2)6(C6H7NO)4]n, is composed of polymeric chains formed by alternating centrosymmetric Cu2(μ‐CH3CH2CO2)4 and Cu(C3H5O2)2(C6H7NO)2 units. These elemental units are linked by two bridging 3‐pyridylmethanol (3PM) ligands. The Cu2(μ‐CH3CH2CO2)4 group presents a centrosymmetric tetra­bridged structure with four synsyn bridging propionate ligands to which two 3PM mol­ecules are bonded (through N), occupying the apical positions of each square‐pyramidal polyhedron around the CuII ions. The remaining mononuclear group is centred around a third CuII ion, which lies on a symmetry centre and is bound to two monodentate propionate groups (through O), two monodentate 3PM mol­ecules (through N) and two bridging 3PM mol­ecules (through O), thus completing a square‐bipyramidal CuO2N2O2 coordination.  相似文献   

18.
β‐K2Cr2O7     
The monoclinic modification of dipotassium dichromate, β‐K2Cr2O7, has been synthesized in the K2Cr2O7–H2O system. The structure consists of K+ cations and Cr2O72? dimers. In contrast with triclinic α‐K2Cr2O7 [Kuz'min, Ilyukhin, Kharitonov & Belov (1969). Krist.Tech. 4 , 441–461], the Cr2O72? groups in β‐K2Cr2O7 have twofold crystallographic symmetry and are parallel to each other.  相似文献   

19.
The three title compounds, namely 4‐phenyl‐1H‐imidazolium hexa‐μ2‐chloro‐chloro‐μ4‐oxo‐tris­(4‐phenyl‐1H‐imidazole‐κN1)­tetra­copper(II) monohydrate, (C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2O, hexa‐μ2‐chloro‐μ4‐oxo‐tetra­kis­(pyridine N‐oxide‐κO)tetra­copper(II), [Cu4Cl6O(C5H5NO)4], and hexa‐μ2‐chloro‐tetra­kis(2‐methyl‐1H‐imidazole‐κN1)‐μ4‐oxo‐tetra­copper(II) methanol trisolvate, [Cu4Cl6O(C4H6N2)4]·3CH4O, exhibit the same Cu4OCl6 framework, where the O atom at the centre of an almost regular tetra­hedron bridges four copper cations at the corners. This group is in turn surrounded by a Cl6 octa­hedron, leading to a rather globular species. This special arrangement of the CuII cations results in a diversity of magnetic behaviours.  相似文献   

20.
The crystal structure of the title compound, μ‐2‐hydroxy­butane­dioato‐1κ2O4,O4′:2κ3O1,O2,O4‐nitrato‐2κO‐tris­(1,10‐phen­anthroline)‐1κ4N,N′;2κ2N,N′‐dicopper(II) nitrate tetra­hydrate, [Cu2(C4H3O5)(NO3)(C12H8N2)3](NO3)·4H2O, contains an unsymmetrical dinuclear copper complex with Cu(phen)2 and Cu(phen)(NO3) moieties (phen is 1,10‐phenanthroline) bridged by a malate (2‐hydroxy­butane­dioate) ligand, which acts as a double‐bridging and tetra­dentate ligand. As a result of this double‐bridging action, especially the direct coordination of the O atom of one carboxyl­ate group of malate to the two Cu atoms, the Cu⋯Cu distance is only 4.199 (1) Å and the two phen planes are roughly parallel [the shortest inter­planar distance is 3.28 (1) Å], exhibiting an obvious intra­molecular π–π stacking inter­action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号