首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve the service life of SnO2?Sb electrodes in degradation of refractory wastewater, we report anodic information of tin oxide antimony on top of Nb?TiO2 nanotubes (Nb?Ti/Nb?TiO2?NTs/ATONPs) prepared through screen‐printing. It was found that the Nb?Ti/Nb?TiO2?NTs/ATONPs anodes presented a significantly enhanced in electro‐catalytic oxidation performance (in Acid Red 73) compared to titanium‐based tin antimony electrodes (Ti/ATONPs). Additionally, the electrochemical properties and the stability were further studied by the electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV), cyclic voltammetry (CV), chronoamperometry (CA) measurements and accelerated life test, respectively. These results indicated that Nb?TiO2?NTs/ATONPs anode possessed Nb?TiO2 nanotubes which exhibited a higher oxygen evolution potential (2.24 V vs. Ag/AgCl), as well as a better wettability, a larger current at constant potential and 2.1 times longer lifetime than the conventional Ti/ATONPs anode.  相似文献   

2.
Nickel nanoparticles/TiO2 nanotubes/Ti electrodes were prepared by galvanic deposition of nickel nanoparticles on the TiO2 nanotubes layer on titanium substrates. Titanium oxide nanotubes were fabricated by anodizing titanium foil in a DMSO fluoride‐containing electrolyte. The morphology and surface characteristics of titanium dioxide nanotubes and Ni/TiO2/Ti electrodes were investigated using scanning electron microscopy and energy‐dispersive X‐ray spectroscopy, respectively. The results indicated that nickel nanoparticles were homogeneously deposited on the surface of TiO2 nanotubes. The electrocatalytic behaviour of nickel nanoparticles/TiO2/Ti electrodes for the methanol electrooxidation was studied by electrochemical impedance spectroscopy, cyclic voltammetry, differential pulse voltammetry and chronoamperometry methods. The results showed that Ni/TiO2/Ti electrodes exhibit a considerably higher electrocatalytic activity toward the oxidation of methanol.  相似文献   

3.
Alkali treatment of the Ti‐6Al‐7Nb alloys with subsequent heat treatment has been adopted as an important surface treatment procedure for apatite formation in dental implants. This study examined the effects of alkali treatment on the precipitation of apatite on a Ti‐6Al‐7Nb alloy. All samples were immersed in a Hanks' Balanced Salts Solution [simulated body fluid (SBF)] at pH 7.4 and 36.5 °C for 15 days. The surface structural changes of samples due to the alkali treatment and immersing in SBF were analyzed by XRD, SEM and XPS. The cell toxicity was evaluated based on the optical density of the surviving cells. The samples were implanted into the abdominal connective tissue of mice for 4 weeks. A sodium titanate hydrogel layer was formed after immersion in an NaOH solution. A dense and uniform bone‐like apatite layer precipitated on the alkali and heat‐treated Ti‐6Al‐7Nb alloy in the SBF. There was a significant difference in cell toxicity between the treated and untreated Ti‐6Al‐7Nb (P < 0.05). The thickness of the fibrous capsule formed around the implant body was decreased significantly by the alkali and heat treatment (P < 0.05). The alkali treatment samples showed a better biocompatibility than the commercial metal samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The aim of the present work was to investigate electrochemical behavior of the Ti6Al7Nb alloy in the simulated body fluid (SBF) containing Ca2+, HCO3 ?, and HPO4 2? ions. At first, optimal conditions necessary for oxide nanotube formation were determined. The experiments were conducted in the 1 M (NH4)2SO4 with 0.5 wt% NH4F electrolyte at room temperature. Anodization of the alloy samples was carried out under variable external voltage U in the range from 10 to 40 V at room temperature. Obtained surface morphology was examined by SEM and X-ray techniques. Nanotube diameter was calculated and correlated with the imposed voltage. Having control over the size of nanotubes, samples with the obtained nanostructures of a chosen diameter were immersed into SBF solution with pH = 7.4 for a fixed period of time. Then, they were removed from the fluid and subjected to the electrochemical investigation. Corrosion current and corrosion potential were determined, and it was found that the best anticorrosion properties were obtained for heat-treated nanotube layer: i corr = 39 nA/cm2 and E corr = ?0.236 V vs Ag/AgCl. Finally, the interaction between the oxide surface and the solution was studied using polarization and electrochemical impedance spectroscopy (EIS) techniques.  相似文献   

5.
The objective of the present study was the defined preparation and characterization of various oxide layers on titanium, Ti6Al7Nb and Ti6Al4V. Immobilization techniques for collagen and hydroxyapatite Ca10(PO4)6(OH)2, the main components contacting an implant within the human body, were tested. The oxide layers were created by electrochemical polarization in phosphate buffer solutions. The thickness of the layers depended on the formation potential. We found a thickness/potential relation of approximately 2.2 nm/V. At formation potentials up to 80 V anatase was the only titanium dioxide modification traceable by Raman spectroscopy and XRD. The electrochemically assisted deposition of hydroxyapatite on these surfaces starts with an amorphous product which can be monitored by SEM, IR and Raman spectroscopy. The immobilization of collagen followed by anodic electrochemical polarization results either in partial integration of collagen fibrils into the oxide layer or at least in a strong increase of the interaction force between TiO2 and the collagen fibrils.  相似文献   

6.
Bi‐doped TiO2 nanotubes with variable Bi/Ti ratios were synthesized by hydrothermal treatment in 10 mol·L?1 NaOH (aq.) through using Bi‐doped TiO2 particles derived from conventional sol‐gel method as starting materials. The effects of Bi content on the morphology, textural properties, photo absorption and photocatalytic activity of TiO2 nanotubes were investigated. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray diffraction (XRD) and X‐ray photoelectron spectroscopy (XPS) observations of the obtained samples revealed the formation of titanate nanotube structure doped with Bi, which exists as a higher oxidation state than Bi3+. Bi‐doping TiO2 nanotubes exhibited an extension of light absorption into the visible region and improved photocatalytic activities for hydrogen production from a glycerol/water mixed solution as compared with pure TiO2 nanotubes. There was an optimal Bi‐doped content for the photocatalytic hydrogen production, and high content of Bi would retard the phase transition of titanate to anatase and result in morphology change from nanotube to nanobelt, which in turn decreases the photocatlytic activity for hydrogen evolution.  相似文献   

7.
Highly‐ordered Fe‐doped TiO2 nanotubes (TiO2nts) were fabricated by anodization of co‐sputtered Ti–Fe thin films in a glycerol electrolyte containing NH4F. The as‐sputtered Ti–Fe thin films correspond to a solid solution of Ti and Fe according to X‐ray diffraction. The Fe‐doped TiO2nts were studied in terms of composition, morphology and structure. The characterization included scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, UV/Vis spectroscopy, X‐ray photoelectron spectroscopy and Mott–Schottky analysis. As a result of the Fe doping, an indirect bandgap of 3.0 eV was estimated using Tauc’s plot, and this substantial red‐shift extends its photoresponse to visible light. From the Mott–Schottky analysis, the flat‐band potential (Efb) and the charge carrier concentration (ND) were determined to be ?0.95 V vs Ag/AgCl and 5.0 ×1019 cm?3 respectively for the Fe‐doped TiO2nts, whilst for the undoped TiO2nts, Efb of ?0.85 V vs Ag/AgCl and ND of 6.5×1019 cm?3 were obtained.  相似文献   

8.
A series of PANI-CNTs/TiO2 nanotubes/Ti electrodes were fabricated via pulse current co-electrodeposition of polyaniline and functionalized carbon nanotubes onto TiO2 nanotubes/Ti electrodes. FT-IR spectrometry, X-ray photoelectron spectroscopy, and scanning electron microscopy were applied in order to characterize the modified TiO2 nanotubes/Ti electrodes. The morphology studies showed that the PANI-CNTs/TiO2 nanotubes/Ti nanocomposite electrode has many interlaced PANI-CNTs nanorods on the surface of TiO2 nanotubes. The electrochemical measurements of the modified electrodes confirmed that the CNTs in the composite can significantly improve the capacitive behavior as well which have been compared with that of PANI/TiO2 nanotubes/Ti electrodes. The modified electrode exhibited much higher specific capacitance (190 mF cm?2 with 90% retention after 1000 cycles) compared to the PANI/TiO2 nanotubes/Ti (70 mF cm?2 with 77% retention after 1000 cycles) at a current density of 0.85 mA cm?2, indicating its great potential for supercapacitor applications.
Graphical abstract Interlaced polyaniline/carbon nanotube nanocomposite electrodeposited on TiO2 nanotubes/Ti
  相似文献   

9.
The effect of 4d-metal dopants on the densities of states of hexagonal TiO2 nanotubes has been calculated by the linearized augmented cylindrical wave method. It has been demonstrated that the substitution of Nb, Mo, Tc, or Pd atoms for a part of Ti atoms leads to a decrease in the band gap width of the material due to the formation of impurity levels in the band gap of TiO2. Doping TiO2 nanotubes with these metals is a promising way to produce materials for electrodes for electrochemical photolysis of water. Doping with Y, Rh, or Ag leads to the displacement of the absorption edge from the UV to the visible range owing to a considerable broadening of the valence and conduction band edges; Zr, Ru, and Cd have a lower disturbing effect on the electronic levels of TiO2.  相似文献   

10.
Well‐ordered TiO2 nanotubes were prepared by the electrochemical anodization of titanium in an ethylene glycol electrolyte containing 1 wt% NH4F and 10 wt% H2O at 20 V for 20 min, followed by annealing. The surface morphology and crystal structure of the samples were examined as a function of the annealing temperature by field emission scanning electron microscopy (FE‐SEM) and X‐ray diffraction (XRD), respectively. Crystallization of the nanotubes to the anatase phase occurred at 450 °C, while rutile formation was observed at 600 °C. Disintegration of the nanotubes was observed at 600 °C and the structure vanished completely at 750 °C. Electrochemical corrosion studies showed that the annealed nanotubes exhibited higher corrosion resistance than the as‐formed nanotubes. The growth of hydroxyapatite on the different TiO2 nanotubes was also investigated by soaking them in simulated body fluid (SBF). The results indicated that the tubes annealed to a mixture of anatase and rutile was clearly more efficient than that in their amorphous or plain anatase state. The in vitro cell response in terms of cell morphology and proliferation was evaluated using osteoblast cells. The highest cell activity was observed on the TiO2 nanotubes annealed at 600 °C. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The anodic polarization behavior of Al, Ta and Nb foil was investigated in 1‐butyl‐3‐methylimidazolium tetrafluoroborate ionic liquid (BMI‐BF4). Compared with that of Ta and Nb foil, it showed that a better passive film was formed on Al foil surface after the anodic polarization in BMI‐BF4, which could resist the potential up to 94.58 V vs. Ag+/Ag. Besides, similar anodic behavior of Al foil was observed in N‐methyl‐N‐butylpiperidinium tetrafluoroborate ionic liquid (PP14‐BF4), which indicated that the anodic polarization behavior of Al foil was independent of the cations of RTIL. In addition, the investigation of anodic polarization behavior of Al foil was carried out in the mixture electrolytes composed of BMI‐BF4·PC. Differently, two breakdown potential processes of Al foil were presented compared to pure BMI‐BF4. Further research showed that the passive film on Al foil was mainly composed of AlF3 and Al2O3 after the first breakdown potential process, while the fluoride film increased with continual anodic polarization, which improved the anodic stability of Al foil and resisted higher breakdown potential. The high breakdown potential properties of Al foil in BMI‐BF4, PP14‐BF4 and the mixture of BMI‐BF4·PC during the anodic polarization can be favored for R&D of the high performance electrochemical devices.  相似文献   

12.
In the present work we investigate various optical properties (such as light absorption and reflectance) of anodic TiO2 nanotube layers directly transferred as self‐standing membranes onto quartz substrates. This allows investigation in a transmission geometry which provides significantly more reliable data than measurements on the metallic Ti substrate. Light transmission and reflectance measurements were carried out for layers of thickness varying from 1.8 to 50 μm, and the layers were investigated in their amorphous and crystalline forms. A series of wavelength‐dependent light attenuation coefficients are extrapolated and found to match the photocurrent versus irradiation wavelength behavior. A feature specific to anodic nanotubes is that their intrinsic carbon contamination content causes a proportional sub‐bandgap response. Overall, the extracted data provide a valuable basis and understanding for the design of photo‐electrochemical devices based on TiO2 nanotubes.  相似文献   

13.
Au/TiO2/Ti electrode was prepared by a two-step process of anodic oxidation of titanium followed by cathodic electrodeposition of gold on resulted TiO2. The morphology and surface analysis of Au/TiO2/Ti electrodes was investigated using scanning electron microscopy and EDAX, respectively. The results indicated that gold particles were homogeneously deposited on the surface of TiO2 nanotubes. The nanotubular TiO2 layers consist of individual tubes of about 60–90 nm in diameter, and the electrode surface was covered by gold particles with a diameter of about 100–200 nm which are distributed evenly on the titanium dioxide nanotubes. This nanotubular TiO2 support provides a high surface area and therefore enhances the electrocatalytic activity of Au/TiO2/Ti electrode. The electrocatalytic behavior of Au/TiO2/Ti electrodes in the glucose electro-oxidation was studied by cyclic voltammetry. The results showed that Au/TiO2/Ti electrodes exhibit a considerably higher electrocatalytic activity toward the glucose oxidation than that of gold electrode.  相似文献   

14.
α‐Synuclein (α‐SYN) is a very important neuronal protein that is associated with Parkinson’s disease. In this paper, we utilized Au‐doped TiO2 nanotube arrays to design a photoelectrochemical immunosensor for the detection of α‐SYN. The highly ordered TiO2 nanotubes were fabricated by using an electrochemical anodization technique on pure Ti foil. After that, a photoelectrochemical deposition method was exploited to modify the resulting nanotubes with Au nanoparticles, which have been demonstrated to facilitate the improvement of photocurrent responses. Moreover, the Au‐doped TiO2 nanotubes formed effective antibody immobilization arrays and immobilized primary antibodies (Ab1) with high stability and bioactivity to bind target α‐SYN. The enhanced sensitivity was obtained by using {Ab2‐Au‐GOx} bioconjugates, which featured secondary antibody (Ab2) and glucose oxidase (GOx) labels linked to Au nanoparticles for signal amplification. The GOx enzyme immobilized on the prepared immunosensor could catalyze glucose in the detection solution to produce H2O2, which acted as a sacrificial electron donor to scavenge the photogenerated holes in the valence band of TiO2 nanotubes upon irradiation of the other side of the Ti foil and led to a prompt photocurrent. The photocurrents were proportional to the α‐SYN concentrations, and the linear range of the developed immunosensor was from 50 pg mL?1 to 100 ng mL?1 with a detection limit of 34 pg mL?1. The proposed method showed high sensitivity, stability, reproducibility, and could become a promising technique for protein detection.  相似文献   

15.
The development of nanocomposite photocatalyst based on layered double hydroxides (LDHs) associated with TiO2 was the subject of this research. The thermally activated Zn–Al LDHs were selected as catalyst support precursor because of their proven photocatalytic activity and therefore their possible contribution to overall activity of novel Ti–Zn–Al nanocomposite. The catalyst precursor (Zn–Al LDH) was synthesized by low supersaturation coprecipitation method, and its association with active TiO2 component targeting the formation of novel Ti–Zn–Al nanocomposite was achieved by wet impregnation. Simultaneous thermal analysis (TG–DTA) was used to investigate the thermal behavior of Zn–Al LDH and Ti–Zn–Al LDHs. Complementary, morphology, texture, and structure characterization was carried out. The photocatalytic test reaction was performed under UV light using the methylene blue degradation. The results confirmed a successful impregnation of TiO2 on catalyst support precursor Zn–Al–LDH followed by considerable change in morphology and structure of Zn–Al LDH precursor. It was concluded that the synergic effect between TiO2 and Zn–Al LDH precursor contributes to the overall photocatalytic activity.  相似文献   

16.
采用电化学阳极氧化的方法,以氯化铵(NH4Cl)水溶液为电解液,在纯钛表面制备了二氧化钛(TiO2)纳米管。考察了制备电压、氧化时间、Cl-浓度和钛基体的退火处理对阳极氧化过程的影响规律,探讨了在含氯离子电解液中纳米管的形成机理,并基于上述含氯离子电解液中纳米管形成机制,通过两步阳极氧化法得到无支撑纳米管薄膜。  相似文献   

17.
In this work, we grow TiO2 nanotube layers by using the single-step direct anodization of Ti-6Al-7Nb alloy in aqueous electrolytes containing F? ions. Nanotube layers are characterized by spectroscopic ellipsometry (SE) and field-emission gun scanning electron microscopy (FEG-SEM). We also use SE to monitor the anodization process for TiO2 nanotube layers on biocompatible Ti-6Al-7Nb alloy. In addition, we study mechanical properties by nanoindentation.  相似文献   

18.
《Electroanalysis》2018,30(5):969-974
A new chemically modified electrode based on titanium dioxide nanoparticles (TiO2‐NPs) has been developed. Aluminium was incorporated into the TiO2‐NPs to prepare aluminium doped TiO2 nanoparticles (Al‐TiO2‐NPs). Aluminium doped TiO2 nanoparticles‐modified screen printed carbon electrode (Al‐TiO2‐NPs/SPCE) was employed as easy, efficient and rapid sensor for electrochemical detection of vanillin in various types of food samples. Al‐TiO2‐NPs were characterized by energy‐dispersive X‐ray (EDX), transmission electron microscopy (TEM), and X‐ray diffraction (XRD) and analyses showing that the average particle sizes varied for the Al‐NPs (7.63 nm) and Al‐TiO2‐NPs (7.47 nm) with spherical crystal. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were used to optimize the analytical procedure. A detection limit of vanillin was 0.02 μM, and the relative standard deviation (RSD) was 3.50 %, obtained for a 5.0 μM concentration of vanillin. The electrochemical behaviour of several compounds, such as vanillic acid, vanillic alcohol, p‐hydroxybenzaldehyde and p‐hydroxybenzoic, etc., generally present in natural vanilla samples, were also studied to check the interferences with respect to vanillin voltammetric signal. The applicability was demonstrated by analysing food samples. The obtained results were compared with those provided by a previous method based on liquid chromatography for determination of vanillin.  相似文献   

19.
During tempering of solute supersaturated ferrous martensite, the face‐centered cubic MC‐type carbides (M is alloy elements) such as VC and NbC phases usually co‐precipitate on crystal defects such as dislocation and take on plate‐like morphology. Over‐tempering makes the plate‐like shape change to spherical shape because of Ostwald coarsening. The coarsening process strongly correlates to the diffusion behaviors of the carbon and carbide‐forming elements, and consequently inhomogeneous compositional and structural distribution in the carbides is formed. Three‐dimensional atom probe and high‐resolution transmission electron microscopy have been proved useful methods to characterize the composition, morphology and nanostructure of the carbides that precipitate in a quench‐tempered micro‐alloyed steel. Depending on the actual affinity with C and the diffusion behavior, Si and Al are rejected from the alloy carbide, whereas Mn, V and Nb are inhomogeneously enriched in it. The morphology and structure change with the compositional redistribution. During the coarsening process of the pre‐existing plate‐like carbide, transition carbide that is semi‐coherent with ferritic matrix is formed because of the disparity in diffusion ratio of different solutes. A core–shell complex nanostructure is consequently formed in the coarsening carbide, and the core and shell are identified as V8C7 enriched in Mn, Mo and Mo2C, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Two kinds of biocompatible coatings were produced in order to improve the corrosion resistance of nickel titanium (NiTi) alloy. A titanium oxide–titanium (TiO2–Ti) composite was coated on NiTi alloy using electrophoretic method. After the coating process, the samples were heat‐treated at 1000 °C in two tube furnaces, the first one in argon atmosphere and the second one in nitrogen atmosphere at 1000 °C. The morphology and phase analysis of coatings were investigated using scanning electron microscopy and X‐ray diffraction analysis, respectively. The electrochemical behavior of the NiTi and coated samples was examined using polarization and electrochemical impedance spectroscopy tests. Electrochemical tests in simulated body fluid demonstrated a considerable increase in corrosion resistance of composite‐coated NiTi specimens compared to the non‐coated one. The heat‐treated composite coating sample in nitrogen atmosphere had a higher level of corrosion resistance compared to the heat‐treated sample in argon atmosphere, which is mainly due to having nitride phases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号