首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using ionic source assistant, Ti and N co‐doped amorphous C (α‐C:N:Ti) thin films were prepared by pulse cathode arc technique. Microstructure, composition, elemental distribution, morphology, and mechanical properties of α‐C:N:Ti films were investigated in dependence of nitrogen source, pulse frequency, and target current by Raman spectroscopy, X‐ray diffraction, scanning electron microscopy, X‐ray photoelectron spectroscopy, atomic force microscopy, nanoindentation, and surface profilometer. The results show the presence of titanium carbide and nitride in a‐C:N:Ti films. The α‐C:N+:Ti film (6 Hz, 60 A) shows the smaller size and the higher disordering degree of Csp2 clusters. The α‐C:N+:Ti films present smoother surface and smaller particle size than for α‐C:N2:Ti films. N ions facilitate the formation of N‐sp3C bonds in the α‐C:N+:Ti films, and α‐C:N+:Ti (10 Hz, 80 A) film possesses the more graphite‐like N bonds. Higher hardness and lower residual stress present in the α‐C:N2:Ti (10 Hz, 80 A) film.  相似文献   

2.
The tribological properties of Silicon‐containing diamond‐like‐carbon (Si‐DLC) films, deposited by magnetron sputtering Si target in methane/argon atmosphere, were studied in comparison with diamond‐like‐carbon (DLC) films. The DLC films disappeared because of the oxidation in the air at 500 °C, whereas the Si‐DLC films still remained, implying that the addition of Si improved significantly the thermal stability of DLC films. Retarded hydrogen release from DLC film at high temperature and silicon oxide on the surface might have contributed to lower friction coefficient of the Si‐DLC films both after annealing treatment and in situ high‐temperature environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Fullerene‐like hydrogenated carbon films were deposited on Si substrate by plasma‐enhanced chemical vapor deposition. The microstructures of films were characterized by high‐resolution transmission electron microscopy and Raman spectrum. The tribological performance of films was tested by reciprocating ball‐on‐disc tester under 1‐ethyl‐3‐methylimidazolium tetrafluoroborate ionic liquid. The surface morphology and chemical composition of wear tracks and wear rates were investigated by optical microscope, X‐ray photoelectron spectroscopy, and 3D surface profiler. The results indicated that the film with a typical fullerene‐like structure embedded into the amorphous sp2 and sp3 carbon networks could be prepared successfully, and the film shows a higher hardness (26.7 GPa) and elastic recovery (89.9%) compared with the amorphous carbon film. Furthermore, the film shows a lower friction coefficient at low contact load and friction frequency, and excellent wear‐resistance performance at high load and frequency under ionic liquid lubrication. Meanwhile, the wear life of fullerene‐like hydrogenated carbon films could be improved significantly using ionic liquid as a lubrication material. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Plasma‐enhanced chemical vapor deposition was employed to fabricate hydrogenated amorphous carbon (a‐C:H) films and fluorine‐doped hydrogenated amorphous (a‐C:H:F) carbon films. For comparison purpose, the a‐C:H films were treated with CF4 plasma. The bonding structure and tribological behavior of the films were investigated. The results indicate that the F presented mainly in the forms of C–F3, C–F and C–F2 groups in both the a‐C:H:F film and the surface CF4 plasma processed hydrogenated amorphous carbon (F‐P‐a‐C:H) films. Moreover, the a‐C:H:F films, because of the transformation of sp3 to sp2, possess a lower friction coefficient than that of the F‐P‐a‐C:H films. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
A–C:H (hydrogenated amorphous carbon) films were deposited by pulsed direct‐current (d.c.) plasma enhanced chemical vapor deposition on silicon substrates. This study investigated the structural and mechanical evolution of the as‐deposited films with fullerene‐like nanostructure. The results showed that pulsed d.c. negative bias (?500 ~ ?1000 V) signally influenced the growth rate, hardness, surface roughness, sp3 content, and friction behavior of the films. As the pulsed d.c. negative bias voltage increased, the sp3 content, surface roughness, hydrogen content and the friction coefficient of the films decreased; however, the growth rate and the hardness increased. The films deposited at ?1000 V with fullerene‐like microstructure display a nanohardness of about 19.7 GPa and the smallest friction coefficient (~0.06). The evolution on mechanical and structural properties of the films are explained by the a–C:H growth mechanism based on the interaction on plasma‐surface interface and the subsurface reactions in the film. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the influence of nickel incorporation on the mechanical properties and the in vitro bioactivity of hydrogenated carbon thin films were investigated in detail. Amorphous hydrogenated carbon (a‐C:H) and nickel‐incorporated hydrogenated carbon (Ni/a‐C:H) thin films were deposited onto the Si substrates by using reactive biased target ion beam deposition technique. The films' chemical composition, surface roughness, microstructure and mechanical properties were investigated by using XPS, AFM, TEM, nanoindentation and nanoscratch test, respectively. XPS results have shown that the film surface is mainly composed of nickel, nickel oxide and nickel hydroxide, whereas at the core is nickel carbide (Ni3C) only. The presence of Ni3C has increased the sp2 carbon content and as a result, the mechanical hardness of the film was decreased. However, Ni/a‐C:H films shows very low friction coefficient with higher scratch‐resistance behavior than that of pure a‐C:H film. In addition, in vitro bioactivity study has confirmed that it is possible to grow dense bone‐like apatite layer on Ni/a‐C:H films. Thus, the results have indicated the suitability of the films for bone‐related implant coating applications. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Difference X‐ray photoelectron spectroscopy (D‐XPS) revealed the surface oxidation process of a diamond‐like carbon (DLC) film. Evaluation of surface functional groups on DLC solely by the C 1s spectrum is difficult because the spectrum is broad and has a secondary asymmetric lineshape. D‐XPS clarified the subtle but critical changes at the DLC surface caused by wet oxidation. The hydroxyl (C―OH) group was dominant at the oxidized surface. Further oxidized carbonyl (C?O) and carboxyl (including carboxylate) (COO) groups were also obtained; however, the oxidation of C?O to COO was suppressed to some extent because the reaction required C―C bond cleavage. Wet oxidation cleaved the aliphatic hydrogenated and non‐hydrogenated sp2 carbon bonds (C―H sp2 and C―C sp2) to create a pair of C―OH and hydrogenated sp3 carbon (C―H sp3) bonds. The reaction yield for C―H sp2 was superior at the surface, suggesting that the DLC film was hydrogen rich at the surface. Oxidation of aromatic sp2 rings or polycyclic aromatic hydrocarbons such as nanographite to phenols did not occur because of their resonance stabilization with electron delocalization. Non‐hydrogenated sp3 carbon (C―C sp3) bonds were not affected by oxidation, suggesting that these bonds are chemically inert. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The influence of a post‐annealing treatment on the chemical structure of a diamondlike carbon (DLC) film was clarified by Raman spectroscopy. The DLC films were synthesized by ionized deposition. The structures were elucidated via Raman analysis in conjunction with the sp2 cluster model. The as‐prepared DLC film consisted of a dielectric matrix including sp3 carbon, where sp2 clusters were floating. When the post‐annealing treatment commenced, especially between 450 and 600°C, carbon─hydrogen bonds were cleaved, and the hydrogen atoms were desorbed from the film, creating defects or dangling bonds. The defects were reactive in growing sp2 clusters that were strained with numerous defects because of the restricted degrees of freedom in the solid. As the post‐annealing temperature further increased, the clusters became dominant and the strain was gradually dissolved.  相似文献   

9.
A two‐dimensional (2D) sp2‐carbon‐linked conjugated polymer framework (2D CCP‐HATN) has a nitrogen‐doped skeleton, a periodical dual‐pore structure and high chemical stability. The polymer backbone consists of hexaazatrinaphthalene (HATN) and cyanovinylene units linked entirely by carbon–carbon double bonds. Profiting from the shape‐persistent framework of 2D CCP‐HATN integrated with the electrochemical redox‐active HATN and the robust sp2 carbon‐carbon linkage, 2D CCP‐HATN hybridized with carbon nanotubes shows a high capacity of 116 mA h g?1, with high utilization of its redox‐active sites and superb cycling stability (91 % after 1000 cycles) and rate capability (82 %, 1.0 A g?1 vs. 0.1 A g?1) as an organic cathode material for lithium‐ion batteries.  相似文献   

10.
Amorphous non‐hydrogenated germanium carbide (a‐Ge1?xCx) films have been deposited using magnetron co‐sputtering technique by varying the sputtering power of germanium target (PGe). The effects of PGe on composition and structure of the a‐Ge1?xCx films have been analyzed. The FTIR spectrum shows that the C–Ge bonds were formed in the a‐Ge1?xCx films according to the absorption peak at ~610 cm?1. The Raman results indicate that the amorphous films also contain both Ge and C clusters. The XPS results reveal that the carbon concentration decreased as PGe increased from 40 to 160 W. The fraction of sp3 C–C bonds remains almost constant when increasing PGe from 40 to 160 W. The sp2 C–C content of a‐Ge1?xCx film decreases gradually to 35.9% with PGe up to 160 W. Nevertheless, sp3 C–Ge sites rose with increasing PGe. Furthermore, the hardness and the refractive index gradually increased with increasing PGe. The excellent optical transmission of annealed a‐Ge1–xCx double‐layer coating at 400 °C suggests that a‐Ge1?xCx films can be used as an effective anti‐reflection coating for the ZnS IR window in the wavelength region of 8–12 µm, and can endure higher temperature than hydrogenated amorphous germanium carbide do. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The surface modification of the fullerene‐like hydrogenated carbon (FL‐C:H) film was achieved by bombardment using Ar, H, and N ions, respectively. A systematic comparison of X‐ray photoelectron spectroscopy (XPS) and Fourier transformation infrared(FTIR) spectra was made between the FL‐C:H film and ion‐bombarded films. The results show that ion bombardment resulted in the increase of sp3 C content, specially, new C? N bonds were formed for N‐ion‐bombarded film. The contact angle (CA) and friction coefficient of those films were measured. The surface free energy evaluated from the contact angle increased for ion‐bombarded films, and the most obvious increase was obtained for N‐ion‐bombarded film. The friction coefficient decreased for H‐ion‐bombarded film whereas it increased for N‐ion‐bombarded film, and the friction coefficient of Ar‐ion‐bombarded film was close to that of the FL‐C:H film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The intramolecular dehydrogenative amidation of aliphatic amides, directed by a bidentate ligand, was developed using a copper‐catalyzed sp3 C? H bond functionalization process. The reaction favors predominantly the C? H bonds of β‐methyl groups over the unactivated methylene C? H bonds. Moreover, a preference for activating sp3 C? H bonds of β‐methyl groups, via a five‐membered ring intermediate, over the aromatic sp2 C? H bonds was also observed in the cyclometalation step. Additionally, sp3 C? H bonds of unactivated secondary sp3 C? H bonds could be functionalized by favoring the ring carbon atoms over the linear carbon atoms.  相似文献   

13.
A new application of silicon Grignard reagents in C(sp3)?Si bond formation is reported. With the aid of BF3?OEt2, these silicon nucleophiles add across alkenes activated by various azaaryl groups under copper catalysis. An enantioselective version employing benzoxazole‐activated alkenes as substrates and a CuI‐josiphos complex as catalyst has been developed, forming the C(sp3)?Si bond with good to high enantiomeric ratios (up to 97:3). The method expands the toolbox for “conjugate addition” type C(sp3)?Si bond formation.  相似文献   

14.
A series of unprecedented bis‐silylene titanium(II) complexes of the type [(η5‐C5H5)2Ti(LSiX)2] (L=PhC(NtBu)2; X=Cl, CH3, H) has been prepared using a phosphane elimination strategy. Treatment of the [(η5‐C5H5)2Ti(PMe3)2] precursor ( 1 ) with two molar equivalents of the N‐heterocyclic chlorosilylene LSiCl ( 2 ), results in [(η5‐C5H5)2Ti(LSiCl)2] ( 3 ) with concomitant PMe3 elimination. The presence of a Si? Cl bond in 3 enabled further functionalization at the silicon(II) center. Accordingly, a salt metathesis reaction of 3 with two equivalents of MeLi results in [(η5‐C5H5)2Ti(LSiMe)2] ( 4 ). Similarly, the reaction of 3 with two equivalents of LiBHEt3 results in [(η5‐C5H5)2Ti(LSiH)2] ( 5 ), which represents the first example of a bis‐(hydridosilylene) metal complex. All complexes were fully characterized and the structures of 3 and 4 elucidated by single‐crystal X‐ray diffraction analysis. DFT calculations of complexes 3 – 5 were also carried out to assess the nature of the titanium–silicon bonds. Two σ and one π‐type molecular orbital, delocalized over the Si‐Ti‐Si framework, are observed.  相似文献   

15.
Intramolecular dehydrogenative cyclization of aliphatic amides was achieved on unactivated sp3 carbon atoms by a nickel‐catalyzed C?H bond functionalization process with the assistance of a bidentate directing group. The reaction favors the C?H bonds of β‐methyl groups over the γ‐methyl or β‐methylene groups. Additionally, a predominant preference for the β‐methyl C?H bonds over the aromatic sp2 C?H bonds was observed. Moreover, this process also allows for the effective functionalization of benzylic secondary sp3 C?H bonds.  相似文献   

16.
Reported herein is the distal γ‐C(sp3)?H olefination of ketone derivatives and free carboxylic acids. Fine tuning of a previously reported imino‐acid directing group and using the ligand combination of a mono‐N‐protected amino acid (MPAA) and an electron‐deficient 2‐pyridone were critical for the γ‐C(sp3)?H olefination of ketone substrates. In addition, MPAAs enabled the γ‐C(sp3)?H olefination of free carboxylic acids to form diverse six‐membered lactones. Besides alkyl carboxylic acids, benzylic C(sp3)?H bonds also could be functionalized to form 3,4‐dihydroisocoumarin structures in a single step from 2‐methyl benzoic acid derivatives. The utility of these protocols was demonstrated in large scale reactions and diversification of the γ‐C(sp3)?H olefinated products.  相似文献   

17.
The development of highly efficient metal‐free carbon electrocatalysts for the oxygen reduction reaction (ORR) is one very promising strategy for the exploitation and commercialization of renewable and clean energy, but this still remains a significant challenge. Herein, we demonstrate a facile approach to prepare three‐dimensional (3D) N‐doped carbon with a sp3/sp2 carbon interface derived from ionic liquids via a simple pyrolysis process. The tunable hybrid sp3 and sp2 carbon composition and pore structures stem from the transformation of ionic liquids to polymerized organics and introduction of a Co metal salt. Through tuning both composition and pores, the 3D N‐doped nanocarbon with a high sp3/sp2 carbon ratio on the surface exhibits a superior electrocatalytic performance for the ORR compared to that of the commercial Pt/C in Zn–air batteries. Density functional theory calculations suggest that the improved ORR performance can be ascribed to the existence of N dopants at the sp3/sp2 carbon interface, which can lower the theoretical overpotential of the ORR.  相似文献   

18.
Graphene‐supported Si‐TiO2 (Si‐Ti‐GE) composites have been synthesized by a simple polymerization and sintering method. In the Si‐Ti‐GE composites, many small Si‐TiO2 particles are scattered on the graphene sheet, which can mitigate the agglomeration of the material and further reduce the particle size. The initial discharge capacities of Si‐TiO2, Si‐Ti‐GE‐1, Si‐Ti‐GE‐2, and Si‐Ti‐GE‐3 are 336.9, 337.2, 339.8, and 356.6 mAh g−1 at the current density of 200 mA g−1, respectively. The discharge rate capacities of TiO2, Si‐TiO2, and Si‐Ti‐GE‐3 composites retain 57.5%, 41.7%, and 82.1% at the current density from 100 to 400 mA g−1, respectively. Therefore, the introduction of graphene not only could facilitate the Li+ diffusion and electron transport but also could make better electrical conductivity.  相似文献   

19.
The preparation of a series of planar chiral, ferrocenyl‐substituted hydrosilanes as precursors of ferrocene‐stabilized silicon cations is described. These molecules also feature stereogenicity at the silicon atom. The generation and 29Si NMR spectroscopic characterization of the corresponding silicon cations is reported, and problems arising from interactions of the electron‐deficient silicon atom and adjacent C(sp3)?H bonds or aromatic π donors are discussed. These issues are overcome by tethering another substituent at the silicon atom to the ferrocene backbone. The resulting annulation also imparts conformational rigidity and steric hindrance in such a way that the central chirality at the silicon atom is set with complete diastereocontrol. These chiral Lewis acid catalysts were then tested in difficult Diels–Alder reactions, but no enantioinduction was seen.  相似文献   

20.
Hydrogenated nanocomposite aluminum/carbon thin films (Al/a‐C:H) were fabricated on stainless steel and silicon wafer substrates via unbalanced reactive magnetron sputtering from an Al target in CH4/Ar plasma. The composition and structure of Al/a‐C:H films were investigated by high‐resolution transmission electron microscope (HRTEM), XPS and micro‐Raman spectroscopy. Nanoindenter, interferometer and ball‐on‐disc tribometer were carried out to evaluate the hardness, internal stress and tribological properties of Al/a‐C:H films. HRTEM observations confirmed that the metallic Al nanocrystallites were uniformly dispersed in the amorphous carbon matrix. XPS and Raman analyses indicated that the sp2 content increased with the increase of Al content in the films. Nanoindenter and interferometer tests exhibited that the uniform incorporation of Al nanocrystallites can diminish drastically the magnitude of internal stress with maintaining the higher hardness of as‐deposited films. Especially, the ball‐on‐disc tribometer measurements revealed that the nanocomposite film with 2.3 at.% Al content exhibited relatively better wear resistance and self‐lubrication performance with a friction coefficient of 0.06 and wear rate of 3.1 × 10?16 m3/ N·m under ambient air, which can be attributed to the relatively higher hardness, the formation of continuous graphitized transfer film on counterface and the reduced reaction of oxygen with carbon. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号