首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 818 毫秒
1.
Target photons mixed in the 144, 250 and 565 keV mono-energetic neutron calibration fields were measured using a cylindrical NaI(Tl) detector with 7.62 cm both in diameter and in length. The ambient dose equivalent H*(10) of the photons was evaluated by applying the “G(E) function” to the measured pulse height spectrum. Neutrons induce photons by nuclear reactions in the NaI(Tl) detector and affect the pulse height spectrum. In order to eliminate the influence of these neutron events, the time-of-flight technique was applied with operating the accelerator in the pulse mode. The ratios by the ambient dose equivalent H*(10) of the photons to the 144, 250 and 565 keV neutrons were evaluated to be 3.3%, 4.7% and 0.9%, respectively. Although high energy photons ranging from 6 to 7 MeV are emitted by the 19F(p,αγ)16O reactions, the dose of the target photons is low enough to calibrate neutron dosemeters except for ones with high sensitivity to the photons.  相似文献   

2.
Effects of trapped proton flux anisotropy on dose rates in low Earth orbit.   总被引:1,自引:0,他引:1  
Trapped protons in the South Atlantic Anomaly (SAA) have a rather narrow pitch angle distribution and exhibit east-west anisotropy. In low Earth orbits, the E-W effect results in different amounts of radiation dose received by different sections of the spacecraft. This effect is best studied on missions in which the spacecraft flies in a fixed orientation. The magnitude of the effect depends on the particle energy and altitude through the SAA. In this paper, we describe a clear example of this effect from measurements of radiation dose rates and linear energy transfer spectra made on Space Shuttle flight STS-94 (28.5 degree inclination x 296 km altitude). The ratio of dose rates from the two directions at this location in the mid-deck was 2.7. As expected from model calculations, the spectra from the two directions are different, that is the ratio is energy dependent. The data can be used to distinguish the anisotropy models. The flight carried an active tissue equivalent proportional counter (TEPC), and passive thermoluminscent detectors (TLDs), and two types of nuclear emulsions. Using nuclear emulsions, charged particles and secondary neutron energy spectra were measured. The combined galactic cosmic radiation+trapped charged particle lineal energy spectra measured by the TEPC and the linear energy transfer spectrum measured by nuclear emulsions are in good agreement. The charged particle absorbed dose rates varied from 112 to 175 microGy/day, and dose equivalent rates from 264.3 to 413 microSv/day. Neutrons in the 1-10 MeV contributed a dose rate of 3.7 microGy/day and dose equivalent rate of 30.8 microSv/day, respectively.  相似文献   

3.
The results of an investigation into the possibility of applying a device based on a 10B neutron counter (CHM-14) with a polyethylene moderator as the dosimeter of neutron ambient dose equivalent H*(10) in radiation fields of nuclear physics installations at the Joint Institute for Nuclear Research (JINR) are presented. It is shown that the device can be used as the dosimeter of this quantity in the neutron energy range from 0.4 eV to 20 MeV with an error no larger than 30% due to the difference between the energy dependence of its response and the energy dependence of the neutron ambient dose equivalent. Applying the correction coefficients allows one to extend the energy range of neutron dose H*(10) measurement to hundreds MeV. The error due to the anisotropy of the device response does not exceed 35%.  相似文献   

4.
The absorbed dose as a function of lineal energy was measured at the CERN-EC Reference-field Facility (CERF) using a 512-channel tissue equivalent proportional counter (TEPC), and neutron dose equivalent response evaluated. Although there are some differences, the measured dose equivalent is in agreement with that measured by the 16-channel HANDI tissue equivalent counter. Comparison of TEPC measurements with those made by a silicon solid-state detector for low linear energy transfer particles produced by the same beam, is presented. The measurements show that about 4% of dose equivalent is delivered by particles heavier than protons generated in the conducting tissue equivalent plastic.  相似文献   

5.
A joint NASA-Russian study of the radiation environment inside a SPACEHAB 2 locker on Space Shuttle flight STS-57 was conducted. The Shuttle flew in a nearly circular orbit of 28.5 degrees inclination and 462 km altitude. The locker carried a charged particle spectrometer, a tissue equivalent proportional counter (TEPC), and two area passive detectors consisting of combined NASA plastic nuclear track detectors (PNTDs) and thermoluminescent detectors (TLDs), and Russian nuclear emulsions, PNTDs and TLDs. All the detector systems were shielded by the same Shuttle mass distribution. This makes possible a direct comparison of the various dose measurement techniques. In addition, measurements of the neutron energy spectrum were made using the proton recoil technique. The results show good agreement between the integral LET spectrum of the combined galactic and trapped particles using the tissue equivalent proportional counter and track detectors between about 15 keV/micrometers and 200 keV/micrometers. The LET spectrum determined from nuclear emulsions was systematically lower by about 50%, possibly due to emulsion fading. The results show that the TEPC measured an absorbed dose 20% higher than the TLDs, due primarily to an increased TEPC response to neutrons and a low sensitivity of TLDs to high LET particles under normal processing techniques. There is a significant flux of high energy neutrons that is currently not taken into consideration in dose equivalent calculations. The results of the analysis of the spectrometer data will be reported separately.  相似文献   

6.
Since many decades, Bonner sphere spectrometers (BSSs) are routinely used for assessment of neutron spectra over a wide energy range from some meV to GeV. Typically, a spectrometer consists of a neutron detector sensitive to thermal neutrons located inside moderating polyethylene (PE) spheres of various sizes. Based on the response functions of the detector/sphere systems that must be calculated by Monte Carlo codes, an unfolding procedure is applied to deduce the present neutron spectrum from the count rates of the detectors. To start the unfolding procedure, a guess spectrum is required that includes some prior information on the physics of the investigated neutron spectrum, and that is iteratively modified to match the measured count rates. For the present investigation, a BSS-system consisting of an 3He proportional counter and seventeen spheres containing PE or a combination of PE and lead is used. The system is used for example to measure secondary neutrons from cosmic radiation at mountain altitudes, or from high-energy accelerators outside the radiation shielding. A systematic study was performed to quantify the influence of the chosen guess spectrum and the number of iteration steps on the unfolded neutron spectrum, and on integral quantities deduced such as total neutron fluence or ambient dose equivalent. It turned out that none of these changes resulted in dose quantities that were more than a few percent different to those deduced when the optimised start spectrum was used. Similarly, use of the two different response matrices available for our BSS system provided similar values for the ambient dose equivalent.  相似文献   

7.
We measured the double differential neutron yield at 0°, 30°, 60° and 90° from 12C5+ induced reactions on thick targets of Ti and Ag at 12 MeV/amu at the Cyclotron at National Institute of Radiological Sciences, Inage, Japan, with 5″ × 5″ proton recoil scintillation detectors BC-501. The measured neutron spectra were unfolded using pulse height unfolding algorithm and energy and angular distribution obtained. Energy distribution of neutron ambient dose equivalent, H*(10) and absorbed dose, D at different angles was determined from double differential neutron spectra using ICRP recommended fluence to dose conversion coefficients.  相似文献   

8.
An intercomparison of the performances of active neutron detectors was carried out in pulsed neutron fields in the new HiRadMat facility at CERN. Five detectors were employed: four of them (two ionization chambers and two rem counters) are routinely employed in the CERN radiation monitoring system, while the fifth is a novel instrument, called LUPIN, specifically conceived for applications in pulsed neutron fields. The measurements were performed in the stray field generated by a proton beam of very short duration with momentum of 440 GeV/c impinging on a dump. The beam intensity was steadily increased during the experiment by more than three orders of magnitude, with an H*(10) due to neutrons at the detector reference positions varying between a few nSv per burst and a few μSv per burst, whereas the gamma contribution to the total H*(10) was negligible. The aim of the experiment was to evaluate the linearity of the detector response in extreme pulsed conditions as a function of the neutron burst intensity. The results show that the ionization chambers have a quasi-linear response, very close to the ideal behaviour also for values of H*(10) of a few μSv/burst; the LUPIN response shows a slight deviation from the ideal curve when the H*(10) per burst is higher than 100 nSv; the rem counters response are characterized by a strong deviation from the linearity for H*(10) values higher than a few tens of nSv.  相似文献   

9.
A joint investigation between the United States and Russia to study the radiation environment inside the Space Shuttle flight STS-60 was carried out as part of the Shuttle-Mir Science Program (Phase 1). This is the first direct comparison of a number of different dosimetric measurement techniques between the two countries. STS-60 was launched on 3 February 1994 in a nearly circular 57 degrees x 353 km orbit with five U.S. astronauts and one Russian cosmonaut for 8.3 days. A variety of instruments provided crew radiation exposure, absorbed doses at fixed locations, neutron fluence and dose equivalent, linear energy transfer (LET) spectra of trapped and galactic cosmic radiation, and energy spectra and angular distribution of trapped protons. In general, there is good agreement between the U.S. and Russian measurements. The AP8 Min trapped proton model predicts an average of 1.8 times the measured absorbed dose. The average quality factor determined from measured lineal energy, y, spectra using a tissue equivalent proportional counter (TEPC), is in good agreement with that derived from the high temperature peak in the 6LiF thermoluminescent detectors (TLDs). The radiation exposure in the mid-deck locker from neutrons below 1 MeV was 2.53 +/- 1.33 microSv/day. The absorbed dose rates measured using a tissue equivalent proportional counter, were 171.1 +/- 0.4 and 127.4 +/- 0.4 microGy/day for trapped particles and galactic cosmic rays, respectively. The combined dose rate of 298.5 +/- 0.82 microGy/day is about a factor of 1.4 higher than that measured using TLDs. The westward longitude drift of the South Atlantic Anomaly (SAA) is estimated to be 0.22 +/- 0.02 degrees/y. We evaluated the effects of spacecraft attitudes on TEPC dose rates due to the highly anisotropic low-earth orbit proton environment. Changes in spacecraft attitude resulted in dose-rate variations by factors of up to 2 at the location of the TEPC.  相似文献   

10.
The secondary neutron fields at the deep tumor therapy terminal at HIRFL(Heavy Ion Research Facility in Lanzhou) were investigated. The distributions of neutron ambient dose equivalent were measured with a FHT762Wendi-II neutron ambient dose equivalent meter as ~(12)C ions with energies of 165, 207, 270, and 350 Me V/u were bombarded on thick tissue-like targets. The thickness of targets used in the experiments was larger than the range of the carbon ions. The neutron spectra and dose equivalent were simulated by using FLUKA code, and the results agree well with the experimental data. The experiment results showed that the neutron dose produced by fragmentation reactions in tissue can be neglected in carbon-ion therapy, even considering their enhanced biological effectiveness.These results are also valuable for radiation protection, especially in the shielding design of high energy heavy ion medical machines.  相似文献   

11.
This paper summarizes neutron dosimetry measurements made by the USF Physics Research Laboratory aboard US and Russian LEO spacecraft over the past 20 years using two types of passive detector. Thermal/resonance neutron detectors exploiting the 6Li(n,T) alpha reaction were used to measure neutrons of energies <1 MeV. Fission foil neutron detectors were used to measure neutrons of energies above 1 MeV. While originally analysed in terms of dose equivalent using the NCRP-38 definition of quality factor, for the purposes of this paper the measured neutron data have been reanalyzed and are presented in terms of ambient dose equivalent. Dose equivalent rate for neutrons <1 MeV ranged from 0.80 microSv/d on the low altitude, low inclination STS-41B mission to 22.0 microSv/d measured in the Shuttle's cargo bay on the highly inclined STS-51F Spacelab-2 mission. In one particular instance a detector embedded within a large hydrogenous mass on STS-61 (in the ECT experiment) measured 34.6 microSv/d. Dose equivalent rate measurements of neutrons >1 MeV ranged from 4.5 microSv/d on the low altitude STS-3 mission to 172 microSv/d on the ~6 year LDEF mission. Thermal neutrons (<0.3 eV) were observed to make a negligible contribution to neutron dose equivalent in all cases. The major fraction of neutron dose equivalent was found to be from neutrons >1 MeV and, on LDEF, neutrons >1 MeV are responsible for over 98% of the total neutron dose equivalent. Estimates of the neutron contribution to the total dose equivalent are somewhat lower than model estimates, ranging from 5.7% at a location under low shielding on LDEF to 18.4% on the highly inclined (82.3 degrees) Biocosmos-2044 mission.  相似文献   

12.
At the accredited PSI Calibration Laboratory neutron reference fields traceable to the national standards of the Physikalisch-Technische Bundesanstalt (PTB) in Germany are available for the calibration of ambient and personal dose equivalent (rate) meters and passive dosimeters. The photon contribution to the ambient dose equivalent in the neutron fields of the 252Cf and 241Am–Be sources was measured using various photon dose rate meters and active and passive dosimeters. Measuring photons from a neutron source usually involves considerable uncertainties due to the presence of neutron induced photons in the room, due to a non-zero neutron sensitivity of the photon detector, and last but not least due to the energy response of the photon detectors. Therefore eight independent detectors and methods were used to obtain a reliable estimate for the photon contribution of the two sources as an average of the individual methods. For the 241Am–Be source a photon contribution of approximately 4.9% was determined and for the 252Cf source a contribution of 3.6%.  相似文献   

13.
Several types of casks have been deposited in the German interim storage facility for spent fuel assemblies and vitrified high-active waste (HAW) at Gorleben since 1995, most of them of the CASTOR® type. In 2008 a delivery of 11 TN85-type casks arrived. They belong to the Transnuclear/Areva cask family and, compared to the flasks of the German (GNS) CASTOR® type, they differ in the neutron shielding design.Generally, radiation exposure of personnel during transportation and storage of casks containing spent fuel and vitrified waste is caused by mixed photon/neutron fields. Frequently, especially at casks for vitrified waste from reprocessing, neutrons are the major component of radiation exposure.Spectrometric and dosimetric investigations were made around a cask of the TN85-type. Neutron fluence spectra and reference values of the ambient dose equivalent H*(10) were measured by means of a Bonner sphere spectrometer (BSS) at several locations on the cask surface and in its environment. Moreover, commercial area dosemeters, LB6411 neutron monitors and conventional AD 6-type photon dosemeters were used. In addition, the responses of two electronic personal dosemeters for mixed fields (EPD-N2, DMC 2000GN) and a TLD albedo dosemeter were investigated.The neutron spectra obtained from the BSS are presented and compared with former measurements at CASTOR® type casks. The relative responses of the LB6411 survey meter and the individual dosemeters are discussed. The LB6411 monitor indicates H*(10) around the TN85 cask with tolerable measuring uncertainties. The personal dosemeters provide acceptable results for photons but overestimate the neutron dose considerably.  相似文献   

14.
The characteristic X-ray detector (CXRD), a CsI(Tl) scintillator with a 50-mm diameter, is a directional X-ray sensor that measures characteristic X-rays from radioactive material, such as 137Cs, and identifies the direction of radioactive contamination. We evaluated a CXRD and visualized the distribution of radioactivity in the contaminated area near the Fukushima Dai-ichi nuclear power station, where the ambient dose equivalent rate was 2.1 μSv/h at 1 m above ground level. We found a good correlation between the characteristic X-ray fluxes and the distribution of radioactive contaminants with a 0.823 Pearson product–moment correlation coefficient.  相似文献   

15.
Passive radiation dosimeters were exposed aboard the Mir Orbital Station over a substantial portion of the solar cycle in order to measure the change in dose and dose equivalent rates as a function of time. During solar minimum, simultaneous measurements of the radiation environment throughout the habitable volume of the Mir were made using passive dosimeters in order to investigate the effect of localized shielding on dose and dose equivalent. The passive dosimeters consisted of a combination of thermoluminescent detectors to measure absorbed dose and CR-39 PNTDs to measure the linear energy transfer (LET) spectrum from charged particles of LET infinity H2O > or = 5 keV/micrometers. Results from the two detector types were then combined to yield mean total dose rate, mean dose equivalent rate, and average quality factor. Contrary to expectations, both dose and dose equivalent rates measured during May-October 1991 near solar maximum were higher than similar measurements carried out in 1996-1997 during solar minimum. The elevated dose and dose equivalent rates measured in 1991 were probably due to a combination of intense solar activity, including a large solar particle event on 9 June 1991, and the temporary trapped radiation belt created in the slot region by the solar particle event and ensuing magnetic storm of 24 March 1991. During solar minimum, mean dose and dose equivalent rates were found to vary by factors of 1.55 and 1.37, respectively, between different locations through the interior of Mir. More heavily shielded locations tended to yield lower total dose and dose equivalent rates, but higher average quality factor than did more lightly shielding locations. However, other factors such as changes in the immediate shielding environment surrounding a given detector location, changes in the orientation of the Mir relative to its velocity vector, and changes in the altitude of the station also contributed to the variation. Proton and neutron-induced target fragment secondaries, not primary galactic cosmic rays, were found to dominate the LET spectrum above 100 keV/micrometers. This indicates that in low earth orbit, trapped protons in the South Atlantic Anomaly are responsible for the major fraction of the total dose equivalent.  相似文献   

16.
In this study we investigate the dependence of the sensitivity of a TEPC upon its surface area and demonstrate that a compact multi-element tissue equivalent proportional counter (METEPC) has a counting sensitivity comparable to a commercially available 12.7 cm (5 inch) diameter spherical TEPC. The METEPC incorporates 61 cylindrical counting volumes of internal diameter of 0.5 cm and height 5 cm, machined in a single block of tissue equivalent plastic. It is the simplest design available in the multi-element geometrical configuration and is approximately nine times smaller in volume than that of a conventional 12.7 cm spherical TEPC. The neutron sensitivity of commercially available TEPCs and the METEPC simulating a 2 μm tissue site size was examined experimentally using the McMaster University 1.25 MV double stage Tandetron accelerator, which produces low energy neutrons via the 7Li(p, n)7Be reaction. The mean energy of the neutron beams produced ranged from 34 keV to 354 keV. The results presented in this study suggests that the compact METEPC is able to produce measurements in low dose rate radiation environments with the same precision in a given length of time as could be obtained with a 12.7 cm diameter spherical TEPC.  相似文献   

17.
张颂  魏彪  刘易鑫  毛本将  钱易坤  黄宇晨  冯鹏 《强激光与粒子束》2020,32(5):056001-1-056001-7
研究用于校准场所中子剂量监测仪表的241Am-Be中子参考辐射场计量特性。采用蒙特卡罗方法模拟了空气自由中子参考辐射(FRNR),GB/T 14055规定的最小尺寸中子参考辐射(SRNR)和实际中子参考辐射(ARNR)中不同检验点处中子周围剂量当量率、散射中子占比和能谱分布特征。研究结果表明,空气对FRNR中的剂量率和能谱分布影响小,近似为理想中子参考辐射;采用5%含硼聚乙烯作屏蔽的最小尺寸SRNR可减少热中子,降低散射中子占比,影锥法不适用于小尺寸中子参考辐射中对散射中子的修正;ARNR中的散射中子更少、占比更低,影锥法所得散射中子占比与理论值基本一致。  相似文献   

18.
A passive neutron dosemeter based on nuclear track detectors and TLD's was used in 1995 and 1997 on the MIR station and in Space Shuttle flights to MIR. As it is equipped with neutron converters and shieldings of different types the track detector system allows the neutron dose equivalent to be determined in rough energy intervals. The results of the measurements on the MIR station and in the Space Shuttle flights are presented and the influence of charged particles in the complex mixed radiation field in space is discussed. Improvements are possible by means of a new active neutron dosemeter which is under development at the PTB. First measurements with a prototype in the high-energy reference fields at CERN are presented and discussed.  相似文献   

19.
PADC-based nuclear track detectors have been widely used as convenient ambient dosemeters in many working places. However, due to the large energy dependence of their response in terms of ambient dose equivalent (H1(10)) and to the diversity of workplace fields in terms of energy distribution, the appropriate calibration of these dosemeters is a delicate task. These are among the reasons why ISO has introduced the 12789 Series of Standards, where the simulated workplace neutron fields are introduced and their use to calibrate neutron dosemeters is recommended. This approach was applied in the present work to the UAB PADC-based nuclear track detectors. As a suitable workplace, the treatment room of a 15 MV Varian CLINAC DHX medical accelerator, located in the Ospedale S. Chiara (Pisa), was chosen. Here the neutron spectra in two points of tests (1.5 m and 2 m from the isocenter) were determined with the INFN-LNF Bonner Sphere Spectrometer equipped with Dysprosium activation foils (Dy-BSS), and the values of H1(10) were derived on this basis. The PADC dosemeters were exposed in these points. Their workplace specific H*(10) responses were determined and compared with those previously obtained in different simulated workplace or reference (ISO 8529) neutron fields.  相似文献   

20.
The technique details for measuring radiation dose are expounded.The results of gamma and neutron radiation levels are presented and the corresponding radiation shielding is discussed based on the simplified estimation.In addition, the photon radiation level move as background for future experiments is measured by a NaI(T1) detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号