首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A technique is introduced that monitors the depletion of intracellular ground state oxygen concentration ([3O2]) during photodynamic therapy of Mat‐LyLu cell monolayers and cell suspensions. The photosensitizer Pd(II) meso‐tetra(4‐carboxyphenyl)porphine (PdT790) is used to manipulate and indicate intracellular [3O2] in both of the in vitro models. The Stern–Volmer relationship for PdT790 phosphorescence was characterized in suspensions by flowing nitrogen over the suspension while short pulses of 405 nm light were used to excite the sensitizer. The bleaching of sensitizer and the oxygen consumption rate were also measured during continuous exposure of the cell suspension to the 405 nm laser. Photodynamic therapy (PDT) was conducted in both cell suspensions and in cell monolayers under different treatment conditions while the phosphorescence signal was acquired. The intracellular [3O2] during PDT was calculated by using the measured Stern–Volmer relationship and correcting for sensitizer photobleaching. In addition, the amount of oxygen that was consumed during the treatments was calculated. It was found that even at large oxygen consumption rates, cells remain well oxygenated during PDT of cell suspensions. For monolayer treatments, it was found that intracellular [3O2] is rapidly depleted over the course of PDT.  相似文献   

2.
Continuous irradiation during photodynamic therapy (PDT) inevitably induces tumor hypoxia, thereby weakening the PDT effect. In PDT‐induced hypoxia, providing singlet oxygen from stored chemical energy may enhance the cell‐killing effect and boost the therapeutic effect. Herein, we present a phototheranostic (DPPTPE@PEG‐Py NPs) prepared by using a 2‐pyridone‐based diblock polymer (PEG‐Py) to encapsulate a semiconducting, heavy‐atom‐free pyrrolopyrrolidone‐tetraphenylethylene (DPPTPE) with high singlet‐oxygen‐generation ability both in dichloromethane and water. The PEG‐Py can trap the 1O2 generated from DPPTPE under laser irradiation and form a stable intermediate of endoperoxide, which can then release 1O2 in the dark, hypoxic tumor microenvironment. Furthermore, fluorescence‐imaging‐guided phototherapy demonstrates that this phototheranostic could completely inhibit tumor growth with the help of laser irradiation.  相似文献   

3.
Traditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half-life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG-Py, for irradiation-free and oxygen-free PDT. This system was converted to the “singlet oxygen battery” CARG-1O2 and released singlet oxygen without external irradiation or oxygen. CARG-1O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug-resistant bacterial infections. CARG-1O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin-resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA-infected mouse model of pneumonia demonstrated the potential of CARG-1O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation- and oxygen-free treatment of deep infections while improving convenience of PDT.  相似文献   

4.
Reactive oxygen species (ROS)-induced apoptosis is a widely practiced strategy for cancer therapy. Although photodynamic therapy (PDT) takes advantage of the spatial–temporal control of ROS generation, the meticulous participation of light, photosensitizer, and oxygen greatly hinders the broad application of PDT as a first-line cancer treatment option. An activatable system has been developed that enables tumor-specific singlet oxygen (1O2) generation for cancer therapy, based on a Fenton-like reaction between linoleic acid hydroperoxide (LAHP) tethered on iron oxide nanoparticles (IO NPs) and the released iron(II) ions from IO NPs under acidic-pH condition. The IO-LAHP NPs are able to induce efficient apoptotic cancer cell death both in vitro and in vivo through tumor-specific 1O2 generation and subsequent ROS mediated mechanism. This study demonstrates the effectiveness of modulating biochemical reactions as a ROS source to exert cancer death.  相似文献   

5.
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non-selective release of photosensitizers still exist. Herein, we report a 1O2-responsive block copolymer (POEGMA-b-P(MAA-co-VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1O2) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1O2-responsiveness of POEGMA-b-P(MAA-co-VSPpaMA) block copolymer enabled the realization of self-amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT.  相似文献   

6.
Sustained tumor oxygenation is of critical importance during type‐II photodynamic therapy (PDT), which depends on the intratumoral oxygen level for the generation of reactive oxygen species. Herein, the modification of photosynthetic cyanobacteria with the photosensitizer chlorin e6 (ce6) to form ce6‐integrated photosensitive cells, termed ceCyan, is reported. Upon 660 nm laser irradiation, sustained photosynthetic O2 evolution by the cyanobacteria and the immediate generation of reactive singlet oxygen species (1O2) by the integrated photosensitizer could be almost simultaneously achieved for tumor therapy using type‐II PDT both in vitro and in vivo. This work contributes a conceptual while practical paradigm for biocompatible and effective PDT using hybrid microorganisms, displaying a bright future in clinical PDT by microbiotic nanomedicine.  相似文献   

7.
The photophysical parameters for the photosensitizer Pd(II) meso‐Tetra(4‐carboxyphenyl) porphine (PdT790) acquired in a previous study were incorporated into the PDT oxygen diffusion models for cell suspensions and cell monolayers. The time‐dependent phosphorescence signals generated by the diffusion models are shown to match signals previously measured by M.A.W. and M.S.P. when reasonable physical and photophysical parameters are used. Simulations were performed to investigate the effects of metabolic and photodynamic oxygen consumption rates on the PDT dose in each of the treatment geometries. It was found that in cell suspensions of <1 million cells per mL, PDT should not be inhibited by hypoxia if the photodynamic consumption rate is <1 mm  s?1. For cell monolayers the optimal photodynamic oxygen consumption rate was found to depend on the metabolic rate of oxygen consumption. If cells remained well oxygenated in the absence of PDT, then maximum PDT dose was delivered with the lowest practical photodynamic oxygen consumption rate. Simulations of PDT treatments for multicell tumor spheroids showed that large anoxic cores develop within the spheroids and, as a consequence, less PDT dose is delivered in comparison with similar treatments in cell suspensions and cell monolayers.  相似文献   

8.
Nanocarriers are employed to deliver photosensitizers for photodynamic therapy (PDT) through the enhanced penetration and retention effect, but disadvantages including the premature leakage and non‐selective release of photosensitizers still exist. Herein, we report a 1O2‐responsive block copolymer (POEGMA‐b‐P(MAA‐co‐VSPpaMA) to enhance PDT via the controllable release of photosensitizers. Once nanoparticles formed by the block copolymer have accumulated in a tumor and have been taken up by cancer cells, pyropheophorbide a (Ppa) could be controllably released by singlet oxygen (1O2) generated by light irradiation, enhancing the photosensitization. This was demonstrated by confocal laser scanning microscopy and in vivo fluorescence imaging. The 1O2‐responsiveness of POEGMA‐b‐P(MAA‐co‐VSPpaMA) block copolymer enabled the realization of self‐amplified photodynamic therapy by the regulation of Ppa release using NIR illumination. This may provide a new insight into the design of precise PDT.  相似文献   

9.
Photodynamic therapy (PDT) can treat superficial, early‐stage disease with minimal damage to underlying tissues and without cumulative dose‐limiting toxicity. Treatment efficacy is affected by disease physiologic properties, but these properties are not routinely measured. We assessed diffuse reflectance spectroscopy (DRS) for the noninvasive, contact measurement of tissue hemoglobin oxygen saturation (StO2) and total hemoglobin concentration ([tHb]) in the premalignant or superficial microinvasive oral lesions of patients treated with 5‐aminolevulinic acid (ALA)‐PDT. Patients were enrolled on a Phase 1 study of ALA‐PDT that evaluated fluences of 50, 100, 150 or 200 J cm?2 delivered at 100 mW cm?2. To test the feasibility of incorporating DRS measurements within the illumination period, studies were performed in patients who received fractionated (two‐part) illumination that included a dark interval of 90–180 s. Using DRS, tissue oxygenation at different depths within the lesion could also be assessed. DRS could be performed concurrently with contact measurements of photosensitizer levels by fluorescence spectroscopy, but a separate noncontact fluorescence spectroscopy system provided continuous assessment of photobleaching during illumination to greater tissue depths. Results establish that the integration of DRS into PDT of early‐stage oral disease is feasible, and motivates further studies to evaluate its predictive and dosimetric value.  相似文献   

10.
We have previously shown that light fractionation during topical aminolevulinic acid based photodynamic therapy (ALA-PDT) with a dark interval of 2h leads to a significant increase in efficacy in both pre-clinical and clinical PDT. However this fractionated illumination scheme required an extended overall treatment time. Therefore we investigated the relationship between the dark interval and PDT response with the aim of reducing the overall treatment time without reducing the efficacy. Five groups of mice were treated with ALA-PDT using a single light fraction or the two-fold illumination scheme with a dark interval of 30 min, 1, 1.5 and 2h. Protoporphyrin IX fluorescence kinetics were monitored during illumination. Visual skin response was monitored in the first seven days after PDT and assessed as PDT response. The PDT response decreases with decreasing length of the dark interval. Only the dark interval of 2h showed significantly more damage compared to all the other dark intervals investigated (P<0.05 compared to 1.5h and P<0.01 compared to 1h, 30 min and a single illumination). No relationship could be shown between the utilized PpIX fluorescence during the two-fold illumination and the PDT response. The rate of photobleaching was comparable for the first and the second light fraction and not dependent of the length of dark interval used. We conclude that in the skin of the hairless mouse the dark interval cannot be reduced below 2h without a significant reduction in PDT efficacy.  相似文献   

11.
Photodynamic therapy removes unwanted or harmful cells by overproduction of reactive oxygen species (ROS). Fractionated light delivery in photodynamic therapy may enhance the photodynamic effect in tumor areas with insufficient blood supply by enabling the reoxygenation of the treated area. This study addresses the outcome of fractionated irradiation in an in vitro photodynamic treatment (PDT) system, where deoxygenation can be neglected. Our results show that fractionated irradiation with light/dark intervals of 45/60 s decreases ROS production and cytotoxicity of PDT. This effect can be reversed by addition of 1,3-bis-(2-chlorethyl)-1-nitrosurea (BCNU), an inhibitor of the glutathione reductase. We suggest that the dark intervals during irradiation allow the glutathione reductase to regenerate reduced glutathione (GSH), thereby rendering cells less susceptible to ROS produced by PDT compared with continuous irradiation. Our results could be of particular clinical importance for photodynamic therapy applied to well-oxygenated tumors.  相似文献   

12.
Abstract Porphyrins used as sensitizers for the photodynamic therapy (PDT) of tumors are progressively destroyed (photobleached) during illumination. If the porphyrin bleaches too rapidly, tumor destruction will not be complete. However, with appropriate sensitizer dosages and bleaching rates, irreversible photodynamic injury to the normal tissues surrounding the tumor, which retain less sensitizer, may be significantly decreased. This paper surveys the quantum yields and kinetics of the photobleaching of four porphyrins: hematoporphyrin (HP), Photofrin II (PF II), tetra(4-sulfonatophenyOporphine (TSPP) and uroporphyrin I (URO). The initial quantum yields of photobleaching, as measured in pH 7.4 phosphate buffer in air, were: 4.7 × 10-5, 5.4 × 10-5, 9.8 × 10-5, and 2.8 × 10-5 for HP, PF II, TSPP and URO respectively; thus, the rates of photobleaching are rather slow. Low oxygen concentration (2 μM) significantly reduced the photobleaching yields. However, D2O increased the yields only slightly, and the singlet oxygen quencher, azide, had no effect, even at 0.1 M. Photosensitizing porphyrins in body fluids, cells and tissues may be closely associated with various photooxidizable molecules and electron acceptors and donors. Therefore, selected model compounds in these categories were examined for their effects on porphyrin photobleaching. A number inhibited and/or accelerated photobleaching, depending on the compound, the porphyrin and the reaction conditions. For example, 1.0 mM furfuryl alcohol increased the photobleaching yields of HP and URO more than 5-fold, with little effect on PF II or TSPP. In contrast, the electron acceptor, methyl viologen, increased the photobleaching yield of TSPP more than 10-fold, with little accelerating effect on the other porphyrins. These results suggest that the mechanism(s) of the photobleaching of porphyrin photosensitizers in cells and tissues during PDT may be complex.  相似文献   

13.
Singlet oxygen (1O2) is widely regarded as the main cytotoxic substance that induces the biological damage for photodynamic therapy (PDT). In this study, the previously developed near-infrared (NIR) optical imaging system was optimized for fast imaging of 1O2 luminescence. The optical imaging system enables direct imaging of 1O2 luminescence in blood vessels within 2 s during vascular-targeted PDT (V-PDT), which makes this system extremely practical for in vivo studies. The dependence of RB concentration on 1O2 luminescence image was investigated for V-PDT, and the data imply that 1270 nm signal is attributed to 1O2 luminescence. The imaging system operates with a field of view of 9.60 × 7.68 mm2 and a spatial resolution of 30 μm, which holds the potential to elucidate the correlation between cumulative 1O2 luminescence and vasoconstriction for V-PDT.  相似文献   

14.
The anticancer efficacy of photodynamic therapy (PDT) is limited due to the hypoxic features of solid tumors. We report synergistic PDT/chemotherapy with integrated tandem Fenton reactions mediated by ovalbumin encapsulation for improved in vivo anticancer therapy via an enhanced reactive oxygen species (ROS) generation mechanism. O2.− produced by the PDT is converted to H2O2 by superoxide dismutase, followed by the transformation of H2O2 to the highly toxic .OH via Fenton reactions by Fe2+ originating from the dissolution of co-loaded Fe3O4 nanoparticles. The PDT process further facilitates the endosomal/lysosomal escape of the active agents and enhances their intracellular delivery to the nucleus—even for drug-resistant cells. Cisplatin generates O2.− in the presence of nicotinamide adenine dinucleotide phosphate oxidase and thereby improves the treatment efficiency by serving as an additional O2.− source for production of .OH radicals. Improved anticancer efficiency is achieved under both hypoxic and normoxic conditions.  相似文献   

15.
Strong oxygen dependence and limited penetration depth are the two major challenges facing the clinical application of photodynamic therapy (PDT). In contrast, ionizing radiation is too penetrative and often leads to inefficient radiotherapy (RT) in the clinic because of the lack of effective energy accumulation in the tumor region. Inspired by the complementary advantages of PDT and RT, we present herein the integration of a scintillator and a semiconductor as an ionizing‐radiation‐induced PDT agent, achieving synchronous radiotherapy and depth‐insensitive PDT with diminished oxygen dependence. In the core–shell CeIII‐doped LiYF4@SiO2@ZnO structure, the downconverted ultraviolet fluorescence from the CeIII‐doped LiYF4 nanoscintillator under ionizing irradiation enables the generation of electron–hole (e?–h+) pairs in ZnO nanoparticles, giving rise to the formation of biotoxic hydroxyl radicals. This process is analogous to a type I PDT process for enhanced antitumor therapeutic efficacy.  相似文献   

16.
The photosensitized generation of singlet oxygen within tumor tissues during photodynamic therapy (PDT) is self‐limiting, as the already low oxygen concentrations within tumors is further diminished during the process. In certain applications, to minimize photoinduced hypoxia the light is introduced intermittently (fractional PDT) to allow time for the replenishment of cellular oxygen. This condition extends the time required for effective therapy. Herein, we demonstrated that a photosensitizer with an additional 2‐pyridone module for trapping singlet oxygen would be useful in fractional PDT. Thus, in the light cycle, the endoperoxide of 2‐pyridone is generated along with singlet oxygen. In the dark cycle, the endoperoxide undergoes thermal cycloreversion to produce singlet oxygen, regenerating the 2‐pyridone module. As a result, the photodynamic process can continue in the dark as well as in the light cycles. Cell‐culture studies validated this working principle in vitro.  相似文献   

17.
Explicit dosimetry of treatment light fluence and implicit dosimetry of photosensitizer photobleaching are commonly used methods to guide dose delivery during clinical PDT. Tissue oxygen, however, is not routinely monitored intraoperatively even though it is one of the three major components of treatment. Quantitative information about in vivo tissue oxygenation during PDT is desirable, because it enables reactive oxygen species explicit dosimetry (ROSED) for prediction of treatment outcome based on PDT-induced changes in tumor oxygen level. Here, we demonstrate ROSED in a clinical setting, Photofrin-mediated pleural photodynamic therapy, by utilizing tumor blood flow information measured by diffuse correlation spectroscopy (DCS). A DCS contact probe was sutured to the pleural cavity wall after surgical resection of pleural mesothelioma tumor to monitor tissue blood flow (blood flow index) during intraoperative PDT treatment. Isotropic detectors were used to measure treatment light fluence and photosensitizer concentration. Blood-flow-derived tumor oxygen concentration, estimated by applying a preclinically determined conversion factor of 1.5 × 109 μMs cm−2 to the blood flow index, was used in the ROSED model to calculate the total reacted reactive oxygen species [ROS]rx. Seven patients and 12 different pleural sites were assessed and large inter- and intrapatient heterogeneities in [ROS]rx were observed although an identical light dose of 60 J cm−2 was prescribed to all patients.  相似文献   

18.
Sustained tumor oxygenation is of critical importance during type-II photodynamic therapy (PDT), which depends on the intratumoral oxygen level for the generation of reactive oxygen species. Herein, the modification of photosynthetic cyanobacteria with the photosensitizer chlorin e6 (ce6) to form ce6-integrated photosensitive cells, termed ceCyan, is reported. Upon 660 nm laser irradiation, sustained photosynthetic O2 evolution by the cyanobacteria and the immediate generation of reactive singlet oxygen species (1O2) by the integrated photosensitizer could be almost simultaneously achieved for tumor therapy using type-II PDT both in vitro and in vivo. This work contributes a conceptual while practical paradigm for biocompatible and effective PDT using hybrid microorganisms, displaying a bright future in clinical PDT by microbiotic nanomedicine.  相似文献   

19.
Singlet oxygen (1O2) is the primary oxidant generated in photodynamic therapy (PDT) protocols involving sensitizers resulting in type II reactions. 1O2 can give rise to additional reactive oxygen species (ROS) such as the hydroxyl radical (?OH). The current study was designed to assess 3′‐p‐(aminophenyl) fluorescein (APF) and 3′‐p‐(hydroxyphenyl) fluorescein (HPF) as probes for the detection of 1O2 and ?OH under conditions relevant to PDT. Cell‐free studies indicated that both APF and HPF were converted to fluorescent products following exposure to 1O2 generated by irradiation of a water‐soluble photosensitizing agent (TPPS) and that APF was 35‐fold more sensitive than HPF. Using the 1O2 probe singlet oxygen sensor green (SOSG) we confirmed that 1 mm NaN3 quenched 1O2‐induced APF/HPF fluorescence, while 1% DMSO had no effect. APF and HPF also yielded a fluorescent product upon interacting with ?OH generated from H2O2 via the Fenton reaction in a cell‐free system. DMSO quenched the fluorogenic interaction between APF/HPF and ?OH at doses as low as 0.02%. Although NaN3 was expected to quench ?OH‐induced APF/HPF fluorescence, co‐incubating NaN3 with APF or HPF in the presence of ?OH markedly enhanced fluorescence. Cultured L1210 cells that had been photosensitized with benzoporphyhrin derivative exhibited APF fluorescence immediately following irradiation. Approximately 50% of the cellular fluorescence could be suppressed by inclusion of either DMSO or the iron‐chelator desferroxamine. Combining the latter two agents did not enhance suppression. We conclude that APF can be used to monitor the formation of both 1O2 and ?OH in cells subjected to PDT if studies are performed in the presence and absence of DMSO, respectively. That portion of the fluorescence quenched by DMSO will represent the contribution of ?OH. This procedure could represent a useful means for evaluating formation of both ROS in the context of PDT.  相似文献   

20.
Singlet oxygen is among the reactive oxygen species (ROS) with the shortest life‐times in aqueous media because of its extremely high reactivity. Therefore, designing sensors for detection of 1O2 is perhaps one of the most challenging tasks in the field of molecular probes. Herein, we report a highly selective and sensitive chemiluminescence probe ( SOCL‐CPP ) for the detection of 1O2 in living cells. The probe reacts with 1O2 to form a dioxetane that spontaneously decomposes under physiological conditions through a chemiexcitation pathway to emit green light with extraordinary intensity. SOCL‐CPP demonstrated promising ability to detect and image intracellular 1O2 produced by a photosensitizer in HeLa cells during photodynamic therapy (PDT) mode of action. Our findings make SOCL‐CPP the most effective known chemiluminescence probe for the detection of 1O2. We anticipate that our chemiluminescence probe for 1O2 imaging would be useful in PDT‐related applications and for monitoring 1O2 endogenously generated by cells in response to different stimuli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号