首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In this work, we have studied accretion of the dark energies in new variable modified Chaplygin gas (NVMCG) and generalized cosmic Chaplygin gas (GCCG) models onto Schwarzschild and Kerr?CNewman black holes. We find the expression of the critical four velocity component which gradually decreases for the fluid flow towards the Schwarzschild as well as the Kerr?CNewman black hole. We also find the expression for the change of mass of the black hole in both cases. For the Kerr?CNewman black hole, which is rotating and charged, we calculate the specific angular momentum and total angular momentum. We showed that in both cases, due to accretion of dark energy, the mass of the black hole increases and angular momentum increases in the case of a Kerr?CNewman black hole.  相似文献   

2.
In the classical relativistic regime, the accretion of phantom energy onto a black hole reduces the mass of the black hole. In this context, we have investigated the evolution of a Schwarzschild black hole in the standard model of cosmology using the phantom-like modified variable Chaplygin gas and the viscous generalized Chaplygin gas. The corresponding expressions for accretion time scale and evolution of mass have been derived. Our results indicate that the mass of the black hole will decrease if the accreting phantom Chaplygin gas violates the dominant energy condition and will increase in the opposite case. Thus, our results are in agreement with the results of Babichev et al. who first proposed this scenario.  相似文献   

3.
The stationary, spherically symmetric accretion of dark energy onto a Schwarzschild black hole is considered in terms of relativistic hydrodynamics. The approximation of an ideal fluid is used to model the dark energy. General expressions are derived for the accretion rate of an ideal fluid with an arbitrary equation of state p = p(ρ) onto a black hole. The black hole mass was found to decrease for the accretion of phantom energy. The accretion process is studied in detail for two dark energy models that admit an analytical solution: a model with a linear equation of state, p = α(ρ ? ρ0), and a Chaplygin gas. For one of the special cases of a linear equation of state, an analytical expression is derived for the accretion rate of dark energy onto a moving and rotating black hole. The masses of all black holes are shown to approach zero in cosmological models with phantom energy in which the Big Rip scenario is realized.  相似文献   

4.
In this paper, viscous generalized Chaplygin gas as a model of dark energy considered. We assume non-constant bulk viscous coefficient and study dark energy density. We consider several cases of density-dependent viscosities. We find that, in the special case, the viscous generalized Chaplygin gas is corresponding to modified Chaplygin gas.  相似文献   

5.
In this work gravitational collapse of a spherical dust cloud in the background of unified dark matter-dark energy model in the form of modified Chaplygin gas is studied. It is found that invisible matter (dark matter-dark energy) alone in the form of modified Chaplygin gas forms black hole. Also when both components of the fluid are present then the collapse favours the formation of black hole in cases the invisible matter dominates over ordinary dust. The conclusion is totally opposite to the usually known results.  相似文献   

6.
In this work we extend previous work on the evolution of a primordial black hole (PBH) to address the presence of a dark energy component with a super-negative equation of state as a background, investigating the competition between the radiation accretion, the Hawking evaporation and the phantom accretion, the latter two causing a decrease on black hole mass. It is found that there is an instant during the matter-dominated era after which the radiation accretion becomes negligible compared to the phantom accretion. The Hawking evaporation may become important again depending on a mass threshold. The evaporation of PBHs is quite modified at late times by these effects, but only if the generalized second law of thermodynamics is violated.  相似文献   

7.
In this work, the collapsing process of a spherically symmetric star, made of dust cloud, is studied in Ho?ava Lifshitz gravity in the background of Chaplygin gas dark energy. Two different classes of Chaplygin gas, namely, New variable modified Chaplygin gas and generalized cosmic Chaplygin gas are considered for the collapse study. Graphs are drawn to characterize the nature and to determine the possible outcome of gravitational collapse. A comparative study is done between the collapsing process in the two different dark energy models. It is found that for open and closed universe, collapse proceeds with an increase in black hole mass, the only constraint being that, relatively smaller values of Λ has to be considered in comparison to λ. But in case of flat universe, possibility of the star undergoing a collapse in highly unlikely. Moreover it is seen that the most favourable environment for collapse is achieved when a combination of dark energy and dark matter is considered, both in the presence and absence of interaction. Finally, it is to be seen that, contrary to our expectations, the presence of dark energy does not really hinder the collapsing process in case of Ho?ava-Lifshitz gravity.  相似文献   

8.
Holographic dark energy (HDE), presents a dynamical view of dark energy which is consistent with the observational data and has a solid theoretical background. Its definition follows from the entropy-area relation S(A), where S and A are entropy and area respectively. In the framework of loop quantum gravity, a modified definition of HDE called “entropy-corrected holographic dark energy” (ECHDE) has been proposed recently to explain dark energy with the help of quantum corrections to the entropy-area relation. Using this new definition, we establish a correspondence between modified variable Chaplygin gas, new modified Chaplygin gas and the viscous generalized Chaplygin gas with the entropy corrected holographic dark energy and reconstruct the corresponding scalar potentials which describe the dynamics of the scalar field.  相似文献   

9.
10.
We consider a universe filled by a modified generalized Chaplygin gas together with a pressureless dark matter component. We get a thermodynamical interpretation for the modified generalized Chaplygin gas confined to the apparent horizon of FRW universe, whiles dark sectors do not interact with each other. Thereinafter, by taking into account a mutual interaction between the dark sectors of the cosmos, we find a thermodynamical interpretation for interacting modified generalized Chaplygin gas. Additionally, probable relation between the thermal fluctuations of the system and the assumed mutual interaction is investigated. Finally, we show that if one wants to solve the coincidence problem by using this mutual interaction, then the coupling constants of the interaction will be constrained. The corresponding constraint is also addressed. Moreover, the thermodynamic interpretation of using either a generalized Chaplygin gas or a Chaplygin gas to describe dark energy is also addressed throughout the paper.  相似文献   

11.
We investigate cosmological models with extended Chaplygin gas (ECG) as a candidate for dark energy and determine the equation of state parameters using observed data namely, observed Hubble data, baryon acoustic oscillation data and cosmic microwave background shift data. Cosmological models are investigated considering cosmic fluid which is an extension of Chaplygin gas, however, it reduces to modified Chaplygin gas (MCG) and also to generalized Chaplygin gas (GCG) in special cases. It is found that in the case of MCG and GCG, the best-fit values of all the parameters are positive. The distance modulus agrees quite well with the experimental Union2 data. The speed of sound obtained in the model is small, necessary for structure formation. We also determine the observational constraints on the constants of the ECG equation.  相似文献   

12.
Solution for a stationary spherically symmetric accretion of the relativistic perfect fluid with an equation of state p(rho) onto the Schwarzschild black hole is presented. This solution is a generalization of Michel solution and applicable to the problem of dark energy accretion. It is shown that accretion of phantom energy is accompanied by the gradual decrease of the black hole mass. Masses of all black holes tend to zero in the phantom energy Universe approaching the Big Rip.  相似文献   

13.
In this work, we study the evolution of primordial black holes within the context of Brans–Dicke theory by considering the presence of a dark energy component with a super-negative equation of state, called phantom energy, as a background. Besides Hawking evaporation, here we consider two types of accretion—radiation accretion and phantom energy accretion. We found that radiation accretion increases the lifetime of primordial black holes whereas phantom accretion decreases the lifespan of primordial black holes. Investigating the competition between the radiation accretion and phantom accretion, we found that there is an instant during the matter-dominated era beyond which phantom accretion dominates radiation accretion. So the primordial black holes which are formed in the later part of radiation-dominated era and in matter-dominated era are evaporated at a quicker rate than by Hawking evaporation. But for presently evaporating primordial black holes, radiation accretion and Hawking evaporation terms are dominant over the phantom accretion term and hence presently evaporating primordial black holes are not much affected by phantom accretion.  相似文献   

14.
We describe the spherically symmetric steady-state accretion of perfect fluid in the Reissner-Nordström metric. We present analytic solutions for accretion of a fluid with linear equations of state and of the Chaplygin gas. We also show that under reasonable physical conditions, there is no steady-state accretion of a perfect fluid onto a Reissner-Nordström naked singularity. Instead, a static atmosphere of fluid is formed. We discuss a possibility of violation of the third law of black hole thermodynamics for a phantom fluid accretion.  相似文献   

15.
We investigate the effects of the accretion of phantom energy with non-zero bulk viscosity onto a Schwarzschild black hole and show that black holes accreting viscous phantom energy will lose mass rapidly compared to the non-viscous case. When matter is incorporated along with the phantom energy, the black holes meet with the same fate as bulk viscous forces dominate matter accretion. If the phantom energy has large bulk viscosity, then the mass of the black hole will reduce faster than in the small viscosity case.  相似文献   

16.
In the classical relativistic regime, the accretion of phantom-like dark energy onto a stationary black hole reduces the mass of the black hole. We have investigated the accretion of phantom energy onto a stationary charged black hole and have determined the condition under which this accretion is possible. This condition restricts the mass-to-charge ratio in a narrow range. This condition also challenges the validity of the cosmic-censorship conjecture since a naked singularity is eventually produced due to accretion of phantom energy onto black hole.  相似文献   

17.
We have analyzed the evolution of mass of a stationary black hole in the standard FRW cosmological model. The evolution is determined specifically about the time of transition from the earlier matter to the later exotic dark energy dominated universe. It turns out that the accretion rate of matter on the black hole of mass was approximately O(1020) higher than the accretion rate of exotic dark energy at the time of transition.  相似文献   

18.
The evolution of the mass of a black hole embedded in a universe filled with dark energy and cold dark matter is calculated in a closed form within a test fluid model in a Schwarzschild metric, taking into account the cosmological evolution of both fluids. The result describes exactly how accretion asymptotically switches from the matter-dominated to the Λ-dominated regime. For early epochs, the black hole mass increases due to dark matter accretion, and on later epochs the increase in mass stops as dark energy accretion takes over. Thus, the unphysical behaviour of previous analyses is improved in this simple exact model.  相似文献   

19.
Here, we consider interacting viscous modified Chaplygin gas in presence of cosmological constant. We assumed bulk viscosity as a function of density. We consider interaction between modified Chaplygin gas and baryonic matter. Then, the effects of viscosities on the cosmological parameters such as energy, density, Hubble expansion parameter, scale factor and deceleration parameter investigated. This model may be considered as a toy model of our universe.  相似文献   

20.
In this paper we study new varying modified cosmic Chaplygin gas which has viscosity in presence of cosmological constant and space curvature. By using well-known forms of scale factor in Friedmann equation we obtain behavior of dark energy density numerically. We use observational data to fix solution and discuss about stability of our system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号