首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
A total synthesis of dactylolide (1) is described. The key feature involves the Ti(IV)-mediated coupling of structurally complex "Sharpless epoxides" and carboxylic acids in either an intramolecular (macrolactonization) or an intermolecular mode. Other notable aspects include a proton-catalyzed, cis-selective construction of the 4-methylenetetrahydropyran ring; a selective oxidation of an allylic alcohol in the presence of a 1,2-diol by an oxoammonium ion; an efficient ring-closing metathesis reaction of an in situ (bis-TMS) protected alpha,omega-diene-vic-diol; and an aluminum-mediated aza-aldol reaction of a primary amide to 1 to construct the acyclic carbinolamide in zampanolide.  相似文献   

2.
One-electron photooxidations of 5-methyl-2'-deoxycytidine (d(m)C) and 5-trideuteriomethyl-2'-deoxycytidine ([D(3)]d(m)C) by sensitization with anthraquinone (AQ) derivatives were investigated. Photoirradiation of an aerated aqueous solution containing d(m)C and anthraquinone 2-sulfonate (AQS) afforded 5-formyl-2'-deoxycytidine (d(f)C) and 5-hydroxymethyl-2'-deoxycytidine (d(hm)C) in good yield through an initial one-electron oxidation process. The deuterium isotope effect on the AQS-sensitized photooxidation of d(m)C suggests that the rate-determining step in the photosensitized oxidation of d(m)C involves internal transfer of the C5-hydrogen atom of a d(m)C-tetroxide intermediate to produce d(f)C and d(hm)C. In the case of a 5-methylcytosine ((m)C)-containing duplex DNA with an AQ chromophore that is incorporated into the backbone of the DNA strand so as to be immobilized at a specific position, (m)C underwent efficient direct one-electron oxidation by the photoexcited AQ, which resulted in an exclusive DNA strand cleavage at the target (m)C site upon hot piperidine treatment. In accordance with the suppression of the strand cleavage at 5-trideuterio-methylcytosine observed in a similar AQ photosensitization, it is suggested that deprotonation at the C5-methyl group of an intermediate (m)C radical cation may occur as a key elementary reaction in the photooxidative strand cleavage at the (m)C site. Incorporation of an AQ sensitizer into the interior of a strand of the duplex enhanced the one-electron photooxidation of (m)C, presumably because of an increased intersystem crossing efficiency that may lead to efficient piperidine-induced strand cleavage at an (m)C site in a DNA duplex.  相似文献   

3.
A theoretical study at the semiempirical RHF/PM3(tm) level (tm: transition metal) of the binding nature between a glassy carbon (GC) cluster and a nickel(II) complex (nickel(II) phthalocyanine NiPc, nickel(II) tetrasulphophthalocyanine NiTSPc) was performed. Three types of interactions for GC?NiPc (NiTSPc) were studied: (a) through an oxo (O) bridge, (b) through an hydroxo (OH) bridge, and (c) non-bridge. One layer (NiPc, NiTSPc) and two layers (NiPc?NiPc) of complex were considered. The binding energy calculated showed that in both cases NiPc and NiTSPc, the oxo structures are more stable than the hydroxo ones, and than the non-bridge systems. Charge analysis (NAO) predicted that GC gained more electrons in an oxo structure than in the analogues hydroxo. The theoretical results showed an agreement with the experimental data available, an oxo binding between GC and a nickel complex (NiPc, NiTSPc) in aqueous alkaline solutions is formed.  相似文献   

4.
Piperazine-2,5-diones are formed by Dieckmann cyclization (NaH, THF) of substructures of the type CH(2)-N(R)C(O)CH(2)N(R')CO(2)Ph in which the terminal methylene (CH(2)) that is adjacent to nitrogen closes onto the carbonyl group of the phenyl carbamate unit at the other end of the chain. R and R' are alkyl groups, and the terminal methylene is activated by a ketone carbonyl, a nitrile, an ester, or a phosphoryl group. The starting materials are assembled by standard acylation and oxidation processes, starting from a β-(alkylamino)alcohol, an (alkylamino)acetonitrile, an (alkylamino) ester, or an (alkylamino)methyl phosphonate.  相似文献   

5.
Metal-superoxo species are believed to play key roles in oxygenation reactions by metalloenzymes. One example is cysteine dioxygenase (CDO) that catalyzes the oxidation of cysteine with O(2), and an iron(III)-superoxo species is proposed as an intermediate that effects the sulfoxidation reaction. We now report the first biomimetic example showing that a chromium(III)-superoxo complex bearing a macrocyclic TMC ligand, [Cr(III)(O(2))(TMC)(Cl)](+), is an active oxidant in oxygen atom transfer (OAT) reactions, such as the oxidation of phosphine and sulfides. The electrophilic character of the Cr(III)-superoxo complex is demonstrated unambiguously in the sulfoxidation of para-substituted thioanisoles. A Cr(IV)-oxo complex, [Cr(IV)(O)(TMC)(Cl)](+), formed in the OAT reactions by the chromium(III)-superoxo complex, is characterized by X-ray crystallography and various spectroscopic methods. The present results support the proposed oxidant and mechanism in CDO, such as an iron(III)-superoxo species is an active oxidant that attacks the sulfur atom of the cysteine ligand by the terminal oxygen atom of the superoxo group, followed by the formation of a sulfoxide and an iron(IV)-oxo species via an O-O bond cleavage.  相似文献   

6.
The extraction and separation of copper(II), zinc(II), cobalt(II), and cadmium(II) were investigated. Both copper(II) and zinc(II) formed ammine-complexes, while cadmium(II) and cobalt(II) formed hydroxide precipitates in an ammonia medium. By the addition of sodium dodecylsulfate (SDS), a copper(II) complex formed an ion-pair (copper-ammine-DS), which was extracted into the SDS phase. However, a zinc(II) complex did not form an ion-pair, and was soluble in water. Copper(II) ion was recovered by stripping (back-extraction) after the addition of hydrochloric acid. This method was applied to the separation of copper(II) in a brass alloy.  相似文献   

7.
Two ammonium ion/crown ether-based [2]rotaxane monomers-each incorporating (i) a dumbbell-shaped component, possessing an exchangeable benzylic triphenylphosphonium stopper, and (ii) a ring component, bearing an aldehyde function-undergo a sequence of Wittig reactions in which the surrogate triphenylphosphonium stopper is exchanged for a ring component either (i) in the same rotaxane molecule to give cyclic daisy chains by an intramolecular, chain-terminating reaction or (ii) in another rotaxane molecule to give acyclic daisy chains by an intermolecular chain-propagating reaction.  相似文献   

8.
Kallan NC  Halcomb RL 《Organic letters》2000,2(17):2687-2690
[reaction: see text]The ring system of phomactin D was synthesized in racemic form in an efficient manner from 2,3-dimethylcyclohexanone. Notable transformations include (1) an alkylation of the enolate of a vinylogous thiolester to install a quaternary stereocenter, (2) a conjugate addition of cyanide to an alpha,beta-unsaturated aldehyde, (3) the formation of a Weinreb amide directly from a cyanohydrin, and (4) an intramolecular Pd-mediated Suzuki coupling of a B-alkyl-9-BBN derivative and a vinyl iodide to form the macrocyclic ring.  相似文献   

9.
Visible light irradiation of a reaction mixture of carbonyl-coordinated tetra(2,4,6-trimethyl)phenylporphyrinatoruthenium(II) (Ru(II)TMP(CO)) as a photosensitizer, hexachloroplatinate(IV) as an electron acceptor, and an alkene in alkaline aqueous acetonitrile induces selective epoxidation of the alkene with high quantum yield (Phi = 0.6, selectivity = 94.4% for cyclohexene and Phi = 0.4, selectivity = 99.7% for norbornene) under degassed conditions. The oxygen atom of the epoxide was confirmed to come from a water molecule by an experiment with H(2)(18)O. cis-Stilbene was converted into its epoxide, cis-stilbeneoxide, without forming trans-stilbeneoxide. trans-Stilbene, however, did not exhibit any reactivity. Under neutral conditions, an efficient buildup of the cation radical of Ru(II)TMP(CO) was observed at the early stage of the photoreaction, while an addition of hydroxide ion caused a rapid reaction with the cation radical to promote the reaction with reversion to the starting Ru(II)TMP(CO). A possible involvement of a higher oxidized state of Ru such as Ru(IV), Ru(V), Ru(VI) through a dismutation of the Ru(III) species was excluded by an experiment with Ru(VI)TMP(O)(2). Decarbonylation of the Ru complex was also proven to be invalid. A reaction mechanism involving an electron transfer from the excited triplet state of Ru(II)TMP(CO) to hexachloroplatinate(IV) and subsequent formation of OH(-)-coordinated Ru(III) species, leading to an oxo-ruthenium complex as the key intermediate of the photochemical epoxidation, was postulated.  相似文献   

10.
The polymer/solvent/nonsolvent systems with different L-L demixing rates were prepared by employing a binary solvent mixture consisting of two solvents - one exhibits an instantaneous liquid-liquid (L-L) demixing process, while the other exhibits a delayed L-L demixing process. It was found that an increase in the delay time of L-L demixing results in a denser membrane structure, an increase in fiber mechanical strength, a delay desorption of moisture in membrane, and a decrease in gas permeance, for a hollow fiber fabrication system consisting of cellulose acetate (CA) (polymer), N-methyl-pyrrolidone (NMP) (solvent having an instantaneous L-L demixing property), tetrahydrofuran (THF) (solvent having a delayed L-L demixing property) and water (nonsolvent). Hollow fibers prepared under an instantaneous L-L demixing process tends to have more mechanically weak points (flaws) than those prepared under a delayed L-L demixing process. Surprisingly, SEM observation suggests that membranes wet-spun from solutions containing both THF and NMP tend to have a rough outer skin morphology. Inconsistent demixing and the collapse of the outer nascent skin may be the main causes. In addition, the effect of bore fluid chemistry on fiber performance is much more pronounced for systems having a delayed L-L demixing mechanism than that having an instantaneous L-L demixing.  相似文献   

11.
Through design and synthesis of a new series of dyads I-III composed of 2,3-dimethoxynaphthalene as an electron donor (D) and 2,3-dicyanonaphthalene as an acceptor (A) bridged by n-norbornadiene (n = 1-3) we demonstrate an excellent prototype to switch the excited-state electron-transfer dynamics from an adiabatic to a nonadiabatic process. I reveals a remarkable excitonic effect and undergoes an adiabatic type of electron transfer (ET), resulting in a unique charge-transfer emission, of which the peak wavelength exhibits strong solvatochromism. Conversely, upon exciting the donor moiety, a fast D --> A energy transfer takes place for II (approximately 3 ps) and III (< or =30 ps), followed by a nonadiabatic type, weak coupled electron transfer with a relatively slow ET rate, giving rise to dual emission in polar solvents. Further detailed temperature-dependent studies of the ET rate deduced reaction barriers of 2.7 kcal/mol (for II) and 1.3 kcal/mol (for III) in diethyl ether and CH2Cl2, respectively. The results lead to a deduction of the reaction free energy and reorganization energy for both II (in diethyl ether) and III (in CH2Cl2). Theoretical (for I) and experimental (for II and III) approaches estimate the electronic coupling to be 860, 21.9, and 3.2 cm(-1) for I, II, and III, respectively, supporting the adiabatic versus nonadiabatic switching mechanism.  相似文献   

12.
江腾  马万福  谢楠  周平 《物理化学学报》2011,27(10):2291-2296
用紫外-可见(UV-Vis)吸收光谱和1H核磁共振(NMR)谱研究了茶多酚类衍生物表没食子儿茶素没食子酸酯(EGCG)与Zn(Ⅱ)离子的相互作用,并用密度泛函理论(DFT)计算了EGCG与Zn(Ⅱ)离子络合前后的空间结构及其紫外和核磁共振谱.实验与理论研究结果表明:EGCG主要构象是其芳香B环以e键(平伏键)及芳香D环以a键(直立键)形式共同与C环链接.EGCG通过其芳香D环上酚羟基与Zn(Ⅱ)离子相互作用,生成稳定的Zn(Ⅱ)与EGCG摩尔比为1:1的Zn(Ⅱ)-EGCG四面体络合物.  相似文献   

13.
First total syntheses of unnatural (-)-14-epi-samaderine E (5) and natural (-)-samaderine Y (2) were accomplished from (S)-(+)-carvone (6) in 18 and 21 steps, respectively. The syntheses are short, efficient (with an average yield of 80 % plus for each transformation), enantiospecific, and produce nine new chiral centers. The crucial points of the syntheses included a regioselective allylic oxidation on ring C, regio- and stereoselective reduction of ketone, a stereocontrolled epoxidation, an epoxymethano-bridge formation, a chemoselective Grignard reaction, an intramolecular Diels-Alder reaction, an intramolecular aldol addition, and a newly developed manganese(III)-catalyzed allylic oxidation on ring A.  相似文献   

14.
[reaction: see text] A synthesis of the antimitotic alkaloids (-)-colchicine and (-)-isocolchicine is reported. Important steps are (a) enantioselective transfer-hydrogenation of an alkynone, (b) iodine/magnesium exchange with subsequent aromatic acylation, (c) Rh-catalyzed transformation of an alpha-diazoketone into an oxatetracyclic key intermediate through intramolecular [3 + 2]-cycloaddition of an in situ generated carbonyl ylide, and (d) regioselective conversion of the cycloadduct into a tropolone derivative. The new synthetic strategy opens an efficient enantioselective access to colchicine and structural analogues.  相似文献   

15.
The vacuum space inside carbon nanotubes offers interesting possibilities for the inclusion, transportation, and functionalization of foreign molecules. Using first-principles density functional calculations, we show that linear carbon-based chain molecules, namely, polyynes (C(m)H(2), m = 4, 6, 10) and the dehydrogenated forms C(10)H and C(10), as well as hexane (C(6)H(14)), can be spontaneously encapsulated in open-ended single-walled carbon nanotubes (SWNTs) with edges that have dangling bonds or that are terminated with hydrogen atoms, as if they were drawn into a vacuum cleaner. The energy gains when C(10)H(2), C(10)H, C(10), C(6)H(2), C(4)H(2), and C(6)H(14) are encapsulated inside a (10,0) zigzag-shaped SWNT are 1.48, 2.04, 2.18, 1.05, 0.55, and 1.48 eV, respectively. When these molecules come inside a much wider (10,10) armchair SWNT along the tube axis, they experience neither an energy gain nor an energy barrier. They experience an energy gain when they approach the tube walls inside. Three hexane molecules can be encapsulated parallel to each other (i.e., nested) inside a (10,10) SWNT, and their energy gain is 1.98 eV. Three hexane molecules can exhibit a rotary motion. One reason for the stability of carbon chain molecules inside SWNTs is the large area of weak wave function overlap. Another reason concerns molecular dependence, that is, the quadrupole-quadrupole interaction in the case of the polyynes and electron charge transfer from the SWNT in the case of the dehydrogenated forms. The very flat potential surface inside an SWNT suggests that friction is quite low, and the space inside SWNTs serves as an ideal environment for the molecular transport of carbon chain molecules. The present theoretical results are certainly consistent with recent experimental results. Moreover, the encapsulation of C(10) makes an SWNT a (purely carbon-made) p-type acceptor. Another interesting possibility associated with the present system is the direction-controlled transport of C(10)H inside an SWNT under an external field. Because C(10)H has an electric dipole moment, it is expected to move under a gradient electric field. Finally, we derive the entropies of linear chain molecules inside and outside an open-ended SWNT to discuss the stability of including linear chain molecules inside an SWNT at finite temperatures.  相似文献   

16.
The catalytic oxidation of iron(II) with oxygen occurs along with an autocatalytic reaction between palladium(II) tetraaqua complex and iron(II) aqua complex in an oxygen atmosphere. The reaction is catalyzed by a compound of palladium in an intermediate oxidation state, presumably by a small palladium cluster formed in the course of the reduction of palladium(II) tetraaqua complex with iron(II) aqua complex.  相似文献   

17.
The results presented here show that the nature of the axial ligand can alter the distribution of electrons between the metal and the porphyrin in complexes where there is an oxygen atom replacing one of the meso protons. The complexes (1-MeIm)(2)Fe(III)(OEPO) and (2,6-xylylNC)(2)Fe(II)(OEPO(*)) (where OEPO is the trianionic octaethyloxophlorin ligand and OEPO(*) is the dianionic octaethyloxophlorin radical) were prepared by addition of an excess of the appropriate axial ligand to a slurry of [Fe(III)(OEPO)](2) in chloroform under anaerobic conditions. The magnetic moment of (2,6-xylylNC)(2)Fe(II)(OEPO(*)) is temperature invariant and consistent with a simple S = (1)/(2) ground state. This complex with an EPR resonance at g = 2.004 may be considered as a model for the free-radical like EPR signal seen when the meso-hydroxylated heme/heme oxygenase complex is treated with carbon monoxide. In contrast, the magnetic moment of (1-MeIm)(2)Fe(III)(OEPO) drops with temperature and indicates a spin-state change from an S = (5)/(2) or an admixed S = (3)/(2),(5)/(2) state at high temperatures (near room temperature) to an S = (1)/(2) state at temperatures below 100 K. X-ray diffraction studies show that each complex crystallizes in centrosymmetric form with the expected six-coordinate geometry. The structure of (1-MeIm)(2)Fe(III)(OEPO) has been determined at 90, 129, and 296 K and shows a gradual and selective lengthening of the Fe-N(axial bond). This behavior is consistent with population of a higher spin state at elevated temperatures.  相似文献   

18.
Gd(III)-containing metallostar contrast agents are gaining increased attention, because their architecture allows for a slower tumbling rate, which, in turn, results in larger relaxivities. So far, these metallostars find possible applications as blood pool contrast agents. In this work, the first example of a tissue-selective metallostar contrast agent is described. This RGD-peptide decorated Ru(II)(Gd(III))(3)metallostar is synthesized as an α(v)β(3)-integrin specific contrast agent, with possible applications in the detection of atherosclerotic plaques and tumor angiogenesis. The contrast agent showed a relaxivity of 9.65 s(-1) mM(-1), which represents an increase of 170%, compared to a low-molecular-weight analogue, because of a decreased tumbling rate (τ(R) = 470 ps). The presence of the MLCT band (absorption 375-500 nm, emission 525-850 nm) of the central Ru(II)(Ph-Phen)(3)-based complex grants the metallostar attractive luminescent properties. The (3)MLCT emission is characterized by a quantum yield of 4.69% and a lifetime of 804 ns, which makes it an interesting candidate for time-gated luminescence imaging. The potential application as a selective MRI contrast agent for α(v)β(3)-integrin expressing tissues is shown by an in vitro relaxometric analysis, as well as an in vitroT(1)-weighted MR image.  相似文献   

19.
A multifunctional sialyltransferase has been cloned from Pasteurella multocida strain P-1059 and expressed in E. coli as a truncated C-terminal His6-tagged recombinant protein (tPm0188Ph). Biochemical studies indicate that the obtained protein is (1) an alpha2,3-sialyltransferase (main function), (2) an alpha2,6-sialyltransferase, (3) an alpha2,3-sialidase, and (4) an alpha2,3-trans-sialidase. The recombinant tPm0188Ph is a powerful tool in the synthesis of structurally diverse sialoside libraries due to its relaxed substrate specificity, high solubility, high expression level, and multifunctionality.  相似文献   

20.
The Diels-Alder reaction of tetracyanoethylene (TCNE) with 1, 4-diethyl-5-(trimethylsilyl)ethynyl-2,3-diphenylcyclopentadien-5-ol (3a) occurs on the hydroxyl-bearing face of the diene and yields ultimately an imino lactone (5a), whereby the hydroxyl functionality has added across an exo nitrile linkage. TCNE and 5-(trimethylsilyl)ethynyl-1,2,3,4-tetraphenylcyclopentadien-5-ol (3b) behave analogously. In contrast, the [4 + 2] adduct of 3b with dimethyl acetylenedicarboxylate (DMAD) undergoes a dramatic skeletal rearrangement to generate the 1,4-cyclohexadiene (9) in which an alkynyl ketone moiety has migrated onto an ester-bearing carbon. The molecules 5a and 9 have been characterized by X-ray crystallography, and a mechanism for the skeletal rearrangement is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号