首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures of propionaldehyde complex (RS,SR)-(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH3)]+ PF6 (1b+ PF6s−; monoclinic, P21/c (No. 14), a = 10.166 (1) Å, b = 18.316(1) Å, c = 14.872(2) Å, β = 100.51(1)°, Z = 4) and butyraldehyde complex (RS,SR)-[(η5-C5H5)Re(NO)(PPh3)(η2-O=CHCH2CH2CH3)]+ PF6 (1c+PF6; monoclinic, P21/a (No. 14), a = 14.851(1) Å, b = 18.623(3) Å, c = 10.026(2) Å, β = 102.95(1)°, Z = 4) have been determined at 22°C and −125°C, respectively. These exhibit C O bond lengths (1.35(1), 1.338(5) Å) that are intermediate between those of propionaldehyde (1.209(4) Å) and 1-propanol (1.41 Å). Other geometric features are analyzed. Reaction of [(η5-C5H5)Re(NO)(PPh3)(ClCH2Cl)]+ BF4 and pivalaldehyde gives [(η5-C5H5)Re(NO)(PPh3)(η2-O=CHC(CH3)3)]+BF4 (81%), the spectroscopic properties of which establish a π C O binding mode.  相似文献   

2.
The optically active indenyl complexes ((η5-C9H7)Ru(L---L)Cl (where L---L is either (S,S)-1,2-dimethyl-1,2-ethanediylbis(diphenylphosphine) (chiraphos) or (R,R)-1,2-cyclopentanediylbis(diphenylphosphine) (cypenphos)) have been synthesized and spectroscopically characterized and compared with the corresponding cyclopentadienyl complexes. Reaction of the new complexes with 2-e-donors give cationic adducts in which the pentahaptocoordination of the indenyl ligand is maintained. The crystal structures of (S,S)-(η5-C9H7)Ru{Ph2PCH(CH3)CH(CH3)PPh2}Cl (1) and (S,S)-η5-C5H5Ru{Ph2PCH(CH3)CH(CH3)PPh2}Cl (3) have been determined.  相似文献   

3.
The reactions of the half-sandwich molybdenum(III) complexes CpMo(η4-C4H4R2)(CH3)2, where Cp=η5-C5H5 and R=H or CH3, with equimolar amounts of B(C6F5)3 have been investigated in toluene. EPR monitoring shows the formation of an addition product which does not readily react with Lewis bases such as ethylene, pyridine, or PMe3. The analysis of the EPR properties and the X-ray structure of a decomposition product obtained from dichloromethane, [CpMo(η4-C4H6)(μ-Cl)(μ-CH2)(O)MoCp][CH3B(C6F5)3], indicate that the borane attack has occurred at the methyl position.  相似文献   

4.
The photochemical reactions of the title complexes were studied in air-free benzene solution. In both cases photolysis leads to the production of complexes of the formula (η5-C5H5)M(PPh3)2. Both reactions are the result of the initial loss of a methyl radical from the excited state. The primary photoproduct, (η5-C5H5)MPPh3 (M=CO, Ni), then scavenges neutral ligands from the solution to yield, in the case of PPh3, (η5-C5H5)M(PPh3)2. In the absence of uncoordinated ligand in the reaction solution, the cobalt derivative reacts with the starting material to yield (η5-C5H5)Co(PPh3)2, a methyl radical and (η5-C5H5)Co(solvent)n.  相似文献   

5.
The interaction of [(η5-C5H4But)2YbCl · LiCl] with one equivalent of Li[(CH2) (CH2)PPh2] in tetrahydrofuran gave [Ph2PMe2][(η5-C5H4But)2Li] (1) and [(η5-C5H4But)2Yb(Cl)CH2P(Me)Ph2] (2) in 10% and 30% yields, respectively. 1 could also be prepared in 70% yield from the reaction of [Ph2PMe2][CF3SO3] with two equivalents of (C5H4But)Li. Both compounds have been fully characterized by analytical, spectroscopic and X-ray diffraction methods. The solid state structure of 1 reveals a sandwich structure for the [(η5-C5H4But)2Li] anion.  相似文献   

6.
Reaction of ansa-cyclopentadienyl pyrrolyl ligand (C5H5)CH2(2-C4H3NH) (2) with Ti(NMe2)4 affords bis(dimethylamido)titanium complex [(η5-C5H4)CH2(2-C4H3N)]Ti(NMe2)2 (3) via amine elimination. A cyclopentadiene ligand with two pendant pyrrolyl arms, a mixture of 1,3- and 1,4-{CH2(2-C4H3NH)}2C5H4 (4), undergoes an analogous reaction with Ti(NMe2)4 to give [1,3-{CH2(2-C4H3N)}25-C5H3)]Ti(NMe2) (5). Molecular structures of 3 and 5 have been determined by single crystal X-ray diffraction studies.  相似文献   

7.
The silyl group migration observed upon treating (R)(+)-(η5-C5H5)Fe(CO)2-SiMePh(1-Np) with n-BuLi occurs with retention of configuration at silicon. The anion resulting from the migration, (η5-C5H4SiMePh(1-Np))Fe(CO)2Li, is alkylated with MeI to give (R)-(−)-(η5-C5H4SiMePh(1-Np))Fe(CO)2Me (II). Compound II is independently prepared from (η5-C5H5)Fe(CO)2Me. A concerted mechanism for the migration involving frontside nucleophilic attack at silicon is suggested.  相似文献   

8.
Syntheses of the novel sandwich compounds [Fe(η5-C5H5)(η5-C2R2P3)] and [Fe(η5-C5H5)(η5-C2R2P3)W(CO)5], (R = But), are described. The mode of attachment of the [W(CO)5] fragment in the latter compound has been determined by NMR and single crystal X-ray diffraction studies.  相似文献   

9.
The novel alkynyldithiocarboxylate complexes [Fe(η5-C5H5)(S2CCCR) (dppm-P)] (3a,b) and [Fe(η5-C5H5)(S2CCCR)(PPh3)] (4a,b) were obtained through the insertion of CS2 into the iron-akynyl bond in the complexes [Fe(η5-C5H5)(CCR)(L)(L′] L, L′ = dppm R = Ph (1a), tBu(1b); L = (CO), L′ = (PPh3) R = Ph (2a), tBu (2b). Variable-temperature 31P{1H} NMR studies indicate the presence of two different isomers, [Fe(η5-C5H5)(η3-S,C,S′---S2CCCR)(L)(L′)] and [Fe(η5-C5H52-S,S′-S2CCCR)(L)(L′)], which rapidly interconvert at room temperature. The synthesis of the precursor complex [Fe(η5-C5H5)(CCtBu)(CO)(PPh3)] is also described.  相似文献   

10.
Reaction of C5H4(SiMe3)2 with Mo(CO)6 yielded [(η5-C5H3(SiMe3)2)Mo(CO)3]2, which on addition of iodine gave [(η5-C5H3(SiMe3)2Mo(CO)3I]. Carbonyl displacement by a range of ligands: [L = P(OMe)3, P(OPri)3,P(O-o-tol)3, PMe3, PMe2Ph, PMePh2, PPh3, P(m-tol)3] gave the new complexes [(η5-C5H3(SiMe3)2 MO(CO)2(L)I]. For all the trans isomer was the dominant, if not exclusive, isomer formed in the reaction. An NOE spectral analysis of [(η5-C5H3(SiMe3)2)Mo(CO)2(L)I] L = PMe2Ph, P(OMe)3] revealed that the L group resided on the sterically uncongested side of the cyclopentadienyl ligand and that the ligand did not access the congested side of the molecule. Quantification of this phenomenon [L = P(OMe)3] was achieved by means of the vertex angle of overlap methodology. This methodology revealed a steric preference with the trans isomer (less congestion of CO than I with an SiMe3 group) being the more stable isomer for L = P(OMe)3.  相似文献   

11.
Treatment of 1,2-trans-C5H8(PCl2)2 with 1,2-C2H4(NHPr-i)2 gave the C2-symmetric perhydro-1,6,2,5-diazaphosphocine C5H8{P(Cl)N(Pr-i)CH2}2-cyclo, which produced dissymmetric C5H8(PPh2){P[N(Pr-i)CH2]2-cyclo} on further reaction with PhMgBr. Cleavage of the P---N bonds with gaseous HCl afforded C5H8(PPh2)(PCl2), which was converted to C5H8(PPh2){P(OPh)2}2 by reaction with phenol. All chiral P,P derivatives were obtained as racemates as well as resolved (1R,2R)- and (1S,2S)-enantiomers.  相似文献   

12.
The mechanism of the transformation of (η5-C5H5)2NbCl2 to (η5-C5H5)2NbH3 by hydridoaluminate reducing agents has been investigated. Results suggest disproportionation of a niobium(IV) hydrite, leading to the trihydride product and a niobium(III) hydridoaluminate, (η5-C5H5)2NbH2AlR2, which in turn is converted to the trihydride on hydrolysis. (η5-C5H5)2NbH2AlH2 has been isolated; deuterium labelling shows that hydrogens exchange between ring and metal-bridging positions in this molecule.  相似文献   

13.
The complex [MoW(μ-CC6H4Me-4)(CO)27-C7H7)(η5-C2B9H10Me)] reacts with diazomethane in Et2O containing EtOH to afford the dimetal compound [MoW(OEt)(μ-CH2){μ-C(C6H4Me-4)C(Me)O}(η7-C7H7)(η5-C2B9H10Me)]. The structure of this product was established by X-ray diffraction. The Mo---W bond [2.778(4) Å] is bridged by a CH2 group [μ-C---Mo 2.14(3), μ-C---W 2.02(3) Å] and by a C(C6H4Me-4)C(Me)O fragment [Mo---O 2.11(3), W---O 2.18(2), Mo---C(C6H4Me-4) 2.41(3), W---C(C6H4Me-4) 2.09(3), Mo---C(Me) 2.26(3) Å]. The molybdenum atom is η7-coordinated by the C7H7 ring and the tungsten atom is η5-coordinated by the open pentagonal face of the nido-icosahedral C2B9H10Me cage. The tungsten atom also carries a terminally bound OEt group [W---O 1.88(3) Å]. The 1H and 13C-{1H} NMR data for the dimetal compound are reported and discussed.  相似文献   

14.
The complex (di-η5-C5H4CH2CH2CH2C5H4)Ti(η1-C5H5)2 (I) can be obtained unambiguously starting from the corresponding bridged titanocene dichloride. Attempts to synthesize the isomeric compounds (η5-C5H5)2 Ti(di-η1-C5H4-CH2CH2CH2C5H4) (I′) by the action of a convenient bridged dianion on (C5H5)2 TiCl2 afford several compounds, one of them is the complex I. The possibility of interconversion of these complexes by a fluctional process is discussed.  相似文献   

15.
The compounds C5H5Co(η2-CH3CHS)PMe3 (I) and C5H5Co(η2-CH3CHSe)PMe3 (II) are prepared from C5H5Co(CO)PMe3, CH3CHBr2 and NaSH or NaSeH, respectively. The synthesis of the corresponding rhodium complexes C5H5Rh(η2-CH3CHS)P(i-Pr)3 (VI) and C5H5Rh(η2-CH3CHSe)P(i-Pr)3 (VII) has been achieved through hydrogenation of C5H5Rh(η2-EC=CH2)P(i-Pr)3 (E = S, Se), using RhCl(PPh3)3 as a catalyst. The crystal structure of VII has been determined.  相似文献   

16.
Reactions of the lithium salts of 3-substituted indenes 1, 2 with ZrCl4(THF)2 gave two series of nonbridged bis(1-substituted)indenyl zirconocene dichloride complexes. Fractional recrystallization from THF–petroleum ether furnished the pure racemic and mesomeric isomers of [(η5-C9H6-1-C(R1)(R2)---o-C6H4---OCH3)2ZrCl2nTHF (R1=R2=CH3, n=1, rac-1a and meso-1b; R1=CH3, R2=C2H5; n=0.5 or 0, rac-2a and meso-2b), respectively. Complex 1a was further characterized by X-ray diffraction to have a C2 symmetrically racemic structure, where the six-member rings of the indenyl parts are oriented laterally and two o-CH3O---C6H4---C(CH3)2--- substituents are oriented to the open side of the metallocene (Ind: bis-lateral, anti; Substituent: bis-central, syn). The four zirconocene complexes are highly symmetrical in solution as characterized by room temperature 1H-NMR, however 1H–1H NOESY of meso-1b shows that some of the NOE interactions arise from the two separated indenyl parts of the same molecule, which can only be well explained by taking into account the torsion isomers in solution.  相似文献   

17.
The ruthenium(II) complex Ru(CO)2(NH2(NH2CH2C6H5)2(Si(C6H5)(CH3)2)I has been prepared by the reaction of Ru(CO)4(Si(C6H5)(CH3)2)I with benzylamine. Two-dimensional homonuclear 1H NMR experiments examine the scalar coupling of the enantiotopic amino and methylene protons of the benzylamine ligand. X-ray analysis of Ru(CO)2(NH2CH2C6H5)2(Si(C6H5)(CH3)2)I·1/3C5H12 (triclinic; P ; a = 14.266(4), b = 15.748(5), c = 20.082(6) Å; = 94.38(3), β = 96.30(2), γ = 101.52(2)°) indicates three crystallographically unique complexes form a clathrate with a pentane guest.  相似文献   

18.
Oxidative addition of ethyl iodide to PdMe2(2,2′-bipyridyl) in (CD3)2CO gives the unstable “PdIMe2Et(bpy)”, which undergoes reductive elimination to form PdIR(bpy) (R = Me, Et), ethane, and propane. Ethene and palladium metal are also formed, and are attributed to decomposition of PdIEt(bpy) via β-elimination. Similar results are obtained with n-propyl iodide, although a palladium(IV) intermediate was not detected, but CH2=CHCH2X (X = Br, I) and PhCH=CHCH2Br give isolable complexes fac-PdXMe2(CH2CH=CHR)(L2) (R = H, Ph; L2 = bpy, phen). The propenyl complexes decompose at ambient temperature to form ethane, a trace of PdXMe(L2), and mixtures of [Pd(η3-C3H5)(L2)]X and [Pd(η3-C3H5)(L2)]-[Pd(η3-C3H5)X2]; for fac-PdBrMe2(CH2CH=CH2)(bpy) the major palladium(II) product is [Pd(η3-C3H5)(bpy)]Br.  相似文献   

19.
An unexpected trimanganese(I) tetrathiolate-bridged complex, [Mn3(CO)9(μ-SC6H5)4], with an incomplete cubane structure, was obtained by thermal reaction of [Mn2(CO)10] with [Mo(η5-C5H5)2(SC6H5)2]. The structure, established by single-crystal X-ray diffraction studies, shows the cation, [Mo(η5-C5H5)2(H)CO]+, directed towards the vacant site of the cubane structure. Possible routes by which the anion and the cation could be formed are discussed.  相似文献   

20.
The reaction of [Nb(η5-C5H4R)2X2] [1: R = SiMe3, X = Cl; 2: R = SiMe3, X = Br; 3: R = H, X = Cl; 4: R =t, X = Cl] with nitroso derivatives ArNO [a: Ar = Ph; b: Ar = o-CH3-C3H4; c: Ar = p-(CH3)2NC6H4] yields paramagnetic complexes formulated as [Nb(η5-C5H4R)(η3-C5H4R)X2(ArNO-N,O) 1a, 1b, 1c, 2a, 3a, 4a and 4c, which have been characterized by ESR and IR spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号