首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Abstract— From spectroscopic data and rate constants in the literature, equilibrium constants and rates of thermal formation of singlet oxygen (1Δg and 1Σg+) were calculated for a number of conditions. For the gas phase we estimate K eq(1Δg3Σg-) = 1.67 exp(-94.31 KJ/RT) and K eq(1Σg+/3Σg-) = 0.33 exp(-157.0 KJ/RT). The calculated rate constants for the 3Σg+1Δg transition of O2 at 25°C varied from 2.5 × 10-11 s-1 in water to 4.8 × 10-16 s-1 in air, assuming equal solvent interactions with the ground and excited states. Physical quenchers for singlet oxygen are expected to be catalysts for its thermal formation. Equations are presented which allow one to estimate whether such catalysis by quenchers will result in a pro-oxidant effect.  相似文献   

2.
Abstract— The chemical reaction rate constant of bilirubin with singlet oxygen in basic aqueous solution has been redetermined to be 3.5 × 108 M-1 s-1 by a competitive technique using a 1,3-diphenylisobenzofuran in sodium dodecyl sulfate micelles. Bilirubin also physically quenches a singlet oxygen with a rate constant of 9 × 108 M -1 s-1. The lifetime of singlet oxygen in D2O solution has been determined to be 35 μ s . The absorption cross-section for the molecular oxygen 3g-→1δ g + 1 v electronic transition at 1.06μn in aqueous solution is unexpectedly larger than the gas paase cross-section.  相似文献   

3.
Abstract— Zn(II)phthalocyanine (ZnPc) generates O2(1Δg) with a quantum yield of ca. 0.4 upon photocxcitation at 354 or 600 nm in ethanolic solution as determined by time-resolved phosphorescence studies at 1270 nm and photooxidation experiments using 1,3-diphenylisobenzofuran (DPBF) as substrate. The quantum yield of photooxidation slightly increases upon incorporation of ZnPc into unilamellar liposomes of dipalmitoylphosphatidylcholine. Under our irradiation conditions (600 nm, 18°C, and short light exposure times), DPBF(5–50 μM) undergoes photooxidation by a pure Type II mechanism; the rate constant for the O2(1Δg) + DPBF reaction is (1.1 ±0.1) x 109 M-1 s_1 in ethanol solution and determined to be about two orders of magnitude smaller when both ZnPc and DPBF are embedded into liposomes.  相似文献   

4.
Abstract— The spectra and molar absorbances of the HO2 and O2- free radicals have been redetermined in aqueous formate solutions by pulse and stopped-flow radiolysis as well as by 60Co gamma-ray studies. The extinction coefficients at the corresponding maxima and 23°C are 225= 1400 ± 80 M -1 cm-1 and 225= 2350 ± 120 M -1 cm-1 respectively. Reevaluation of earlier published rate data in terms of the new extinction coefficients yielded the following rate constants for the spontaneous decay of HO2 and O2-: K Ho2+HO2= (8.60 ± 0.62) × 105 M -1 s-1; K Ho2+O2-= (1.02 ± 0.49) × 108 M -1 s-1; K Ho2+O2- < 0.35 M -1 s-1. For the equilibrium HO2→ O2-+ H+ the dissociation constant is K Ho2= (2.05 ± 0.39) × 10-5 M or p K HO2= 4.69 ± 0.08. G (O2-) has been evaluated as a function of formate concentration.  相似文献   

5.
Abstract— Radiolytic formation and peroxidation of fatty acid radicals have been investigated by pulse radiolysis techniques in oleate, linoleate, linolenate and arachidonate systems. A strong absorption band at 280 nm associated with conjugated radicals, Rconj, formed in polyunsaturated fatty acid moieties has been used as a probe for kinetic processes occurring at doubly allylic sites in the hydrocarbon chain. Formation of Rconj by O- has been found to be more efficient than the less selective OH radical. Peroxidation of Rconj is shown to be somewhat slower, ( k R+ O2˜ 3 × 108 M -1 s-1), than O2 reactions with radicals in oleate ( k R+ O2= 1 × 109 M -1 s-1). Peroxy radicals generated in these reactions disappear slowly by essentially second order processes (2 k RO1˜ 107 M -1 s-1). The superoxide radical, O-2, shows little if any reactivity towards 0.01 M linolenate or arachidonate over periods of 20 s.  相似文献   

6.
Abstract— The possibility of 1O2 (1Δg) participation in the oxidation of polyphenols and quinones has been investigated in two systems: (1) the system involving autooxidation leading to oxidative polymerization and destruction, and (2) the modified Trautz-Schorigin reaction, i.e. oxidation of polyphenols and HCHO with H2O2 in concentrated alkaline solutions. The red band with maximum at 635 nm observed in chemiluminescence of pyrocatechol, adrenaline, pyrogallol, gallic acid, adrenochrome and p -benzoquinone corresponds to the transition 2O2(1Δg) → 2O2(3Σ-g). Emission bands in the range 475–540 nm arise from the superposition of the 2O2(1Δg) → 2O2(3Σ-g) transition and radiative deactivation of excited oxidation products. In system (2) chemiluminescence has a broad band from 580 nm beyond 800 nm and much higher intensity than in system (1). Formaldehyde was found to enhance light emission in system (1) by a factor of about 30. The influence of solvents, including D2O in which 1O2 has varying lifetimes, on kinetics of chemiluminescence as well as quenching effect of β-carotene, hydroquinone, cysteine, bilirubin and biliverdin strongly support the involvement of 1O2 in the chemiluminescence of both systems.  相似文献   

7.
Abstract— The hematoporphyrin-sensitized production of singlet molecular oxygen, O2(1Δg), has been investigated in methanol and in aqueous solution. The quantum yield for formation of O2(1Δg) (ΦΔ) has been measured by both steady-state (oxygen consumption) and time-resolved (near-infrared luminescence) methods. In methanol, both techniques indicate that ΦΔ= 0.76 and the value remains independent of sensitizer concentration over a wide range. This finding is consistent with the dye persisting in a monomelic form in methanol solution. In contrast, ΦΔ decreases markedly with increasing sensitizer concentration in water due to dimerization of the dye. Analysis of the steady-state data indicates ΦΔ values of 0.74 and 0.12, respectively, for monomer and dimer. It is further shown that the efficiency whereby quenching of the triplet state by O2 results in generation of O2(1Δg) is substantially lower for the dimer than for the corresponding monomer. Because monomer and dimer possess quite different absorption spectral profiles, the efficacy for photodynamic action with hematoporphyrin exhibits a pronounced wavelength dependence.  相似文献   

8.
Abstract— Experiments on the photooxidation of N -allylthiourea, thiourea, and N-allylurea sensitized by the dye phenosafranine show that in N -allylthiourea the thiourea group is the site of singlet oxygen attack, while the allyl moiety neither reacts with nor quenches this metastable form of O2 (in neutral aqueous solutions). Low concentrations of N-3 (a known quencher of singlet oxygen) strongly reduce the photooxidation of allylthiourea by a mechanism which apparently obeys simple competition kinetics. From these results the rate constant of the reaction between allylthiourea and singlet oxygen is obtained ( k = 4 × 106 M -1 s-1; pH = 7.1).  相似文献   

9.
Abstract— …According to the criteria of enhancement in D2O and inhibition by sodium azide, the oxidation of tyramine photosensitized by methylene blue is largely a singlet oxygen or Type II process. Its quantum yield approximates 0.3 in D2O at pH 10. There is a less efficient reaction not quenched by azide, which is assigned to a dye-substrate or Type I process. It gives rise to products with distinct bands at 320 and 285nm. Products of the Type I reaction are further oxidized by singlet oxygen and thereby compete with tyramine for this reagent. Kinetic parameters were estimated by computer simulation of the dependence of quantum yield on extent of reaction. The rate constant for reaction of O2 (1Δg) with tyramine was estimated to be 2.8 × 108 M -1 s -1± 20% at pH 10. The reaction was also sensitized by hypericin in what appears to be a Type II process.  相似文献   

10.
Abstract— Recent experimental data obtained using the separated sensitizer and substrate method to investigate the interaction of O2(1δg) with various substances has been re-interpreted by means of a more complete theory. Comparison of experimental and recalculated values of the dependence of relative reaction rates on the sensitizer-substrate separation indicate general accord for experiments in which singlet oxygen acceptors in aqueous solution were used. The presumption is therefore that singlet molecular oxygen O2(1δg) is indeed the active oxidizing agent and that the theory presented and experiment are entirely in agreement.
For experiments in which bacterial targets were used a very distinct disagreement between theory and experiment is evident, the conclusion being that the kill rate does not depend linearly on the O2(1δg) concentration in the immediate proximity of the bacteria. However, the data is consistent with a quadratic dependence on the 1δg concentration. A possible conclusion therefore is that the cytotoxic species is actually O2(1σ+g), formed by an energy pooling reaction involving two O2(1δg) molecules.  相似文献   

11.
Abstract— The photosensitized oxidation of 10–100 μ M N -acetyl-L-tryptophanamide (NATA) in neutral aqueous solution and in the presence of various dyes proceeds by a pure O2(1Δg)-involving mechanism. Incorporation of the tryptophyl (Trp) residue into the polypeptide chain of human serum albumin (HSA) has no influence on the mechanism and efficiency of Trp photooxidation when sensitized either by methylene blue, a non-binding dye, or by rose bengal, a dye that gives non-covalent 1: 1 complexes with HSA. This is due to the location of the Trp residue in close proximity of the protein surface and, in the case of rose bengal, to the coincidence of the photophysical properties (including the quantum yield of O2(1Δg) generation) for the free and HSA-bound dye. Hematoporphyrin also binds to HSA with 1: 1 stoichiometry, although at a different site from rose bengal. Bound Hp again displays photophysical properties very similar with those of free Hp; however, the efficiency of Trp photo-oxidation in HSA is about 5-fold higher than in NATA owing to a limited rearrangement of the protein structure, induced by Hp binding, which enhances the probability of chemical quenching of O2(1Δg) by the indole ring.  相似文献   

12.
Abstract— The fluoroquinolone antibiotics can induce skin photosensitivity in some patients and this has been ascribed to the generation of reactive oxygen species, such as singlet oxygen (O2[1Δg]). We have studied the photochemical properties of the different ionized forms of the fluoroquinolone norfloxacin upon complexation with Mg2+ and Ca2+ ions, as it is proposed that the antibiotic exists mainly as a complex in the blood plasma. We found that the norfloxacin cation (pH < 6) shows no photodegradation after UVA irradiation and has a low quantum yield of O2(1Δg) generation. The norfloxacin cation does not complex. Ca2+ or Mg2+ ions; when these ions are added to the solution, we observed no changes in the fluorescence quantum yields (φflu) and singlet oxygen yields (φΔ). In contrast, the neutral (6 ± pH > 8.5) and anionic (pH > 9) forms of norfloxacin are able to complex calcium and magnesium, and their generation of O2 (1Δg) is decreased by complexation. The neutral zwitterionic form and the anionic form also quench singlet oxygen by both chemical and physical pathways regardless of complex formation, while physical quenching is observed for the cation. At pH > 7.4, norfloxacin photobleaches and complexation to Ca2+ and Mg2+ increases the rate at which photobleaching occurs. Thus, both the pH of the medium and complexation with metal cations may affect the phototoxic potential of this antibiotic.  相似文献   

13.
Abstract— The physical quenching of singlet molecular oxygen (1Δg) by amino acids and proteins in D2O solution has been measured by their inhibition of the rate of singlet oxygen oxidation of the bilirubin anion. Steady-state singlet oxygen concentrations are produced by irradiating the oxygenated solution with the 1–06 μm output of a Nd-YAG laser, which absorbs directly in the electronic transition 1Δg+ 1 v →3Σg-. The rate of quenching by most of the proteins studied is approximated by the sum of the quenching rates of their amino acids histidine, tryptophan and methionine, which implies that these amino acids in the protein structure are all about equally accessible to the singlet oxygen. The quenching constants differ from those obtained by the ruby-laser methylene-blue-photosensitized method of generating singlet oxygen, or from the results of steady-state methylene-blue-photosensitized oxidation, where singlet oxygen is assumed to be the main reactive species. The singlet oxygen quenching rates in D2O, pD 8, are (107ℒ mol-1 s-1): alanine 0–2, methionine 3, tryptophan 9, histidine 17, carbonic anhydrase 85, lysozyme 150, superoxide dismutase 260, aposuperoxide dismutase 250.  相似文献   

14.
Abstract— The influence of chloride ion on the rate of decay of triplet methylene blue in 0.01 M acid in the absence and presence of ferrous ions was investigated by means of laser flash-photolysis monitored by kinetic spectrophotometry. Chloride weakly accelerates decay of 3MBH in aqueous solution in the absence of Fe(II). Quenching of 3MBH2+ by Fe(II) is more strongly catalyzed by Cl- in both water and 50 v/v% aq. CH3CN. The uncatalyzed quenching constant, k 5, is of the order of 1 × 106 M -1 s-1 while in 4.8 M aqueous chloride ( μ – 7.2 M ) k 5= (37.2 ± 1.8) × 106 M -1 s-1. A possible role of chloride is as a bridging species in quenching via electron transfer between 3MBH2+ and Fe(II).  相似文献   

15.
Abstract— Exploratory experiments using simulated conditions indicate that the terpene, (+)-limonene can serve to detect O2(1Δg) in polluted atmospheres. 1O2 attack on limonene results in the formation of specific oxidation products in a specific distribution; quantitative identification of these products is a highly specific test for 1O2.  相似文献   

16.
Abstract— Several porphyrin esters used as models for polystyrene-bound porphyrins have been prepared and their excited states have been studied by laser flash photolysis, IR phosphorescence of singlet molecular oxygen, O2(1Δg), and steady-state fluorescence. The photophysical properties of the porphyrin esters in solution are affected by the presence of nitro group(s) in the chain. In this case, an important decrease in φf, φT and φδ (to ca 0.7–0.4 of the value for the parent dimethyl ester) is observed. This is mainly due to intramolecular electron-transfer quenching [by the nitro group(s)] of the first excited singlet state of the porphyrin. The thermodynamic feasibility of this deactivation pathway has been confirmed polarographically. Quenching of the porphyrin triplet state and of O2(1Δg) by the nitro groups is negligible. The present conclusions explain also the results obtained previously for the photooxidation of bilirubin sensitized by the parent insoluble polystyrene-bound porphyrins. In that case the photooxidation rates were correlated directly with the quantum yield of O2(1Δg) production by the sensitizer. The consequences of these results for the use of polystyrene-bound porphyrins in sensitized photooxidation processes are discussed.  相似文献   

17.
Abstract— Experiments are described that enable the kinetic behavior of singlet oxygen, O2(IΔg), to be monitored in the time-resolved mode using a photomultiplier to detect deep orange light (γmax 660 nm). This orange light is a consequence of the upconversion of the natural emission of O2(IΔg) at 1269 nm.  相似文献   

18.
Abstract— Singlet oxygen has been generated directly in 1,1,2-trichloro, 1,2,2-trifluoroethane solution by irradiation of the oxygen dimol 23∑-g→21δg transition with a pulsed dye laser and the 3g-1δg+ lv transition with a continuous Nd-YAG laser. The rates of chemical reaction and physical quenching of singlet oxygen so generated has been measured for a series of substituted oxodipyrro-methenes. The results show that the oxodipyrromethenes react with singlet oxygen at rates comparable to that for 1,3-diphenylisobenzofuran. The rate of quenching of singlet oxygen by ground state oxygen has been measured to be 2.5±0.3 × 103 M-l s-1.  相似文献   

19.
Abstract— Flash photolysis at 450 nm has been used to study the quenching of the excited triplet state of lumiflavin and the transient species formed in subsequent reactions in deaerated phosphate buffer (pH 6.9).
The effect of the presence of ferricyanide on the life time of triplet lumiflavin has been studied. The results suggest an energy transfer reaction without concurrent electron transfer reactions. The rate constant for the process was 2.8 times 109 M -1 s-1. The analogous reaction with ferrocyanide could not be observed because of the efficient electron transfer reaction (δG = -20.6 kcal mol-1) leading to the formation of the semireduced lumiflavin and ferricyanide. The rate constant for this reaction was 3.3 times 109 M -1 s-1. The semireduced lumiflavin radical was found to disappear in a second order reaction with a rate constant of 1.7 times 109 M -1 s-1. It was found to react with ferricyanide with a rate constant of 0.7 times 109 M -1 s-1.
A model for the various photochemical and photophysical processes involved in the decay and quenching of the lumiflavin triplet state is suggested and discussed.  相似文献   

20.
Abstract— The photo-oxidation by O2(1Δg) of individual lipid components in egg yolk lecithin is examined as a function of time. The rate of oxidation is correlated with the degree of unsaturation in the fatty-acid chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号