首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This study describes a teacher education experience with grade 5–6 teachers, based on a calculator module within a national program for mathematics in-service teacher education. The aim was to challenge the teachers’ conceptions about the role of the calculator in mathematics teaching and to promote their reflection about professional practices. The research methodology was qualitative and interpretive, with data collection through interviews and observation of teacher education and classroom supervision sessions, as well as analysis of teachers’ portfolios. The results indicate that some teachers are clearly against the use of the calculator in the mathematics classroom, while others allow students to use it in a passive way and some others are very affirmative about its use. The teachers who argue against the use of the calculator seem to predominate, suggesting a great distance between the curriculum orientations and classroom practice. The methodology of the course, combining collective sessions and individual classroom supervision, proved to be fruitful, providing new information, practice and discussion that allowed teachers to analyze different kinds of tasks in which the calculator might be useful, experiment using them in the classroom and reflect about the students’ work. The no imposing and questioning approach used in collective discussions encouraged teachers to assume their own positions; sharing and discussing in the collective reflections during the course stimulated a deeper reflection of their practice. Therefore, in this course, in-service teacher education focused on practice contributed to teachers to reflect on their conceptions and practices.  相似文献   

2.
Much research has been conducted about the philosophy and mathematical writings of René Descartes, but that which focuses on pedagogy does so in a holistic manner. The present study uses a systematic approach to identify pedagogical techniques within each sentence of Descartes' La géométrie. Next, the study provides an analysis of La géométrie based on the techniques identified, their frequencies, and patterns of use within the text. The results of this analysis indicate that Descartes placed a high value on the use of demonstration, particularly in conjunction with deductive reasoning and multiple representations; that Descartes believed his method of approaching mathematical problems was superior to other methods; and that Descartes was in fact concerned with whether his readers understood his ideas or not.  相似文献   

3.
Since their appearance new technologies have raised many expectations about their potential for innovating teaching and learning practices; in particular any didactical software, such as a Dynamic Geometry System (DGS) or a Computer Algebra System (CAS), has been considered an innovative element suited to enhance mathematical learning and support teachers’ classroom practice. This paper shows how the teacher can exploit the potential of a DGS to overcome crucial difficulties in moving from an intuitive to a deductive approach to geometry. A specific intervention will be presented and discussed through examples drawn from a long-term teaching experiment carried out in the 9th and 10th grades of a scientific high school. Focusing on an episode through the lens of a semiotic analysis we will see how the teacher’s intervention develops, exploiting the semiotic potential offered by the DGS Cabri-Géomètre. The semiotic lens highlights specific patterns in the teacher’s action that make students’ personal meanings evolve towards the mathematical meanings that are the objective of the intervention.  相似文献   

4.
This paper describes students’ interactions with dynamic diagrams in the context of an American geometry class. Students used the dragging tool and the measuring tool in Cabri Geometry to make mathematical conjectures. The analysis, using the cK¢ model of conceptions, suggests that incorporating technology in mathematics classrooms enabled a measure-preserving conception of congruency with which students’ could shift focus from shapes to properties. Students also interacted with dynamic diagrams in a novel way, which we call the functional mode of interaction with diagrams, relating outputs and inputs that result when dragging a figure. Students’ participation in classroom interactions through discourse and through actions on diagrams provided evidence of learning using tools within dynamic geometry software.  相似文献   

5.
Our aim is to discuss how a visual display introduced in a classroom activity to represent a specific algebraic procedure is transformed, taking a central role and modifying the ongoing activity. To discuss how visualization comes about in this activity, we describe an illustrative example selected from observations carried out in a 9th grade classroom and analyze the class interaction from a cultural-historical perspective. Our analysis illuminates the tensions that emerge from a difference between the teacher’s way of signifying the algebraic procedure and the students’ overuse of a visual display they associate with it, and how these tensions impel changes in the activity. We further discuss some pros and cons of using visual displays in algebra classes, and we argue that it is very important for the teacher to be aware of them in order to realize the benefits of using such displays.  相似文献   

6.
This study investigates the conceptions and use of inquiry during classroom instruction among beginning secondary science teachers. The 44 participants were beginning secondary science teachers in their first year of teaching. In order to capture the participants' conceptions of inquiry, the teachers were interviewed and observed during the school year. The interviews consisted of questions about inquiry instruction, while the observations documented the teachers' use of inquiry. All of the interviews were transcribed or coded in order to understand the conceptions of inquiry held by the teachers, and all of the observations were analyzed in order to determine the presence of inquiry during the lesson. The standard for assessing inquiry came from the National Science Education Standards. A quantitative analysis of the data indicated that the teachers frequently talked about implementing “scientific questions” and giving “priority to evidence.” This study found a consistency between the way new teachers talked about inquiry and the way they practiced it in their classrooms. Overall, our observations and interviews revealed that the beginning secondary science teachers tended to enact teacher‐centered forms of inquiry, and could benefit from induction programs focused on inquiry instruction.  相似文献   

7.
It has often been assumed that misconceptions of force and motion are part of an alternative framework and that conceptual change takes place when that framework is challenged and replaced with the Newtonian framework. There have also been variations of this theme, such as this structure is not coherent and conceptual change does not involve the replacement of concepts, conceptions or ideas but consists of the development of scientific ideas that can exist alongside ideas of the everyday. This article argues that misconceptions (or preconceptions, intuitive ideas, synthetic models, p-prims etc.) may not be formed until the learner considers force and motion within the learning situation and reports on a classroom observation (that is replicated with similar results) that suggest misconceptions arise, not because of prior experience, but spontaneously in the attempt at making sense of the terms of the discourse. The implications are that misconceptions may not be preformed, that research ought to consider the possible spontaneity in the students’ reasoning and then, if possible, attempt to discern any preformed elements or antecedents, and that we ought to reconsider what is meant by ‘conceptual change’. The classroom observation also suggests gravity as a particular stumbling-block for students. The implications for further research are discussed.  相似文献   

8.
9.
Science as inquiry is a key content standard in the National Science Education Standards; however, few secondary science teachers successfully and consistently implement inquiry‐based instruction in their classrooms. This research examines the role of reform‐based curricular materials in influencing the classroom practices of 12 high school chemistry teachers and investigates the role of the teachers' knowledge and beliefs in their implementation of the reform‐based chemistry curriculum. Qualitative and quantitative data were collected in the form of beliefs interviews and classroom observations. The teachers' classroom practices were measured prior to and during the field test of the reform‐based chemistry curriculum. Analysis of the data revealed that teachers' classroom practice became more reform‐based in the presence of the new curriculum; however, the degree of change is related to the teachers' beliefs about teaching and learning, depth of chemistry knowledge, and years of teaching experience. Experienced, out‐of‐discipline teachers with transitional or student‐centered teaching beliefs demonstrated the most growth in reform‐based teaching practices. This study reinforces the need for reform‐based curriculum to assist teachers in implementing the intent of the National Science Education Standards.  相似文献   

10.
As mathematics teachers attempt to promote classroom discourse that emphasizes reasoning about mathematical concepts and supports students' development of mathematical autonomy, not all students will participate similarly. For the purposes of this research report, I examined how 15 seventh-grade students participated during whole-class discussions in two mathematics classrooms. Additionally, I interpreted the nature of students' participation in relation to their beliefs about participating in whole-class discussions, extending results reported previously (Jansen, 2006) about a wider range of students' beliefs and goals in discussion-oriented mathematics classrooms. Students who believed mathematics discussions were threatening avoided talking about mathematics conceptually across both classrooms, yet these students participated by talking about mathematics procedurally. In addition, students' beliefs about appropriate behavior during mathematics class appeared to constrain whether they critiqued solutions of their classmates in both classrooms. Results suggest that coordinating analyses of students' beliefs and participation, particularly focusing on students who participate outside of typical interaction patterns in a classroom, can provide insights for engaging more students in mathematics classroom discussions.  相似文献   

11.
Helga Jungwirth 《ZDM》2008,40(4):579-590
My study is about the (de)gendering effects of computers on mathematical teaching and learning. I approach the issue by directing attention to the possible intertwining of participants’ relationships to mathematics or computers with their relationships to gender in classroom interaction. According to my analysis, the constitution of gender-neutral relationships to mathematics and computers is subtly interspersed with gendered forms. They emerge from certain conducive situations, and are about mathematically unspecific program manipulations. Thus, findings do not indicate the further gendering of mathematics but the gendering of technology. However, computer algebra systems (CAS) seem to minimize the effects.  相似文献   

12.
Eva Jablonka 《ZDM》2005,37(5):371-378
This article presents an analysis of about 100 interviews with students from eight-grade classrooms in Berlin, Hong Kong and San Diego that reconstructs student motivations and the meanings they attribute to classroom activities. The data of the six classrooms were produced in the Learner's Perspective Study (LPS). The LPS is an international collaboration of researchers investigating practices in eighthgrade mathematics classrooms in 13 countries. Although not the central focus of the research, the case study of six classrooms revealed a variety of students' beliefs and perceptions, which are the focus of this article. These correspond to the possibilities the classroom practices offer. The study also reveals some similarities among student motives and concerns across classrooms. The findings are an important reminder that basing a curriculum upon an alternative vision calls for changing mathematical content as well as the social relations that are established through teaching methods and principles of evaluation.  相似文献   

13.
After a through review of the relevant literature in terms of textbook analysis and mathematics teachers' user of textbooks in school contexts, this paper reports on selected and early findings from a study of mathematics textbooks and their use in English, French and German mathematics classrooms at lower secondary level. The research reviewed in the literature section raises important questions about textbooks as representations of the curriculum and about their role as a link between curriculum and pedagogy. Teachers, in tunr, appear to exercise control over the curriculum as it is enacted by using texts in the service of their own perceptions of teaching and learning. The second and main part of the paper analyses the ways in which textbooks vary and are used by teachers in classroom contexts and how this influences the culture of the mathematics classroom. The findings of the research demonstrate that classroom cultures are shaped by at least two factors: teachers' pedagogic principles in their immediate school and classroom context; and a system's educational and cultural traditions as they develop over time. It is argued that mathematics classroom cultures need to be understood in terms of a wider cultural and systemic context, in order for shared understandings, principles and meanings to be established, whether for promotion of classroom reform or simply for developing a better understanding of this vital component of the mathematics education process.  相似文献   

14.
David Clarke  Li Hua Xu 《ZDM》2008,40(6):963-972
The research reported in this paper examined spoken mathematics in particular well-taught classrooms in Australia, China (both Shanghai and Hong Kong), Japan, Korea and the USA from the perspective of the distribution of responsibility for knowledge generation in order to identify similarities and differences in classroom practice and the implicit pedagogical principles that underlie those practices. The methodology of the Learner’s Perspective Study documented the voicing of mathematical ideas in public discussion and in teacher–student conversations and the relative priority accorded by different teachers to student oral contributions to classroom activity. Significant differences were identified among the classrooms studied, challenging simplistic characterisations of ‘the Asian classroom’ as enacting a single pedagogy, and suggesting that, irrespective of cultural similarities, local pedagogies reflect very different assumptions about learning and instruction. We have employed spoken mathematical terms as a form of surrogate variable, possibly indicative of the location of the agency for knowledge generation in the various classrooms studied (but also of interest in itself). The analysis distinguished one classroom from another on the basis of “public oral interactivity” (the number of utterances in whole class and teacher–student interactions in each lesson) and “mathematical orality” (the frequency of occurrence of key mathematical terms in each lesson). Classrooms characterized by high public oral interactivity were not necessarily sites of high mathematical orality. In particular, the results suggest that one characteristic that might be identified with a national norm of practice could be the level of mathematical orality: relatively high mathematical orality characterising the mathematics classes in Shanghai with some consistency, while lessons studied in Seoul and Hong Kong consistently involved much less frequent spoken mathematical terms. The relative contributions of teacher and students to this spoken mathematics provided an indication of how the responsibility for knowledge generation was shared between teacher and student in those classrooms. Specific analysis of the patterns of interaction by which key mathematical terms were introduced or solicited revealed significant differences. It is suggested that the empirical investigation of mathematical orality and its likely connection to the distribution of the responsibility for knowledge generation and to student learning ourcomes are central to the development of any theory of mathematics instruction and learning.  相似文献   

15.
In the last decade video based classroom research was increasingly applied and further developed in the field of research on mathematics instruction. The main advantages and the methodological challenges of this approach are elaborated from a Swiss perspective on the research process of the TIMSS 1999 video study. Based on a systemic concept of teaching quality the crucial steps of data collection, data processing and analysis of the Swiss sample are briefly described and discussed.  相似文献   

16.
17.
Circa1895, James M. Baldwin introduced a powerful view regarding Darwinian Evolution. Baldwin suggested that behavioral flexibility could play a role in amplifying natural selection because this ability enables individuals to modify the environment of natural selection affecting the fate of future generations. In this view, behavior can affect evolution but, and this is crucial, without claiming that responses to environmental demands acquired during one’s lifetime could be passed directly to one’s offspring. In the present paper, we want to use this view as a guiding metaphor to cast light on understanding how students and teachers can utilize the environment of digital technologies to scaffold their activities. We present examples of activities from geometry and algebra in high school settings that illustrate the potential role that certain technologies can have in transforming classroom interaction and work.  相似文献   

18.
The use of writing as a pedagogical tool to help students learn mathematics is receiving increased attention at the college level ( Meier & Rishel, 1998 ), and the Principles and Standards for School Mathematics (NCTM, 2000) built a strong case for including writing in school mathematics, suggesting that writing enhances students' mathematical thinking. Yet, classroom experience indicates that not all students are able to write well about mathematics. This study examines the writing of a two groups of students in a college‐level calculus class in order to identify criteria that discriminate “;successful” vs. “;unsuccessful” writers in mathematics. Results indicate that “;successful” writers are more likely than “;unsuccessful” writers to use appropriate mathematical language, build a context for their writing, use a variety of examples for elaboration, include multiple modes of representation (algebraic, graphical, numeric) for their ideas, use appropriate mathematical notation, and address all topics specified in the assignment. These six criteria result in The Mathematics Writer's Checklist, and methods for its use as an instructional and assessment tool in the mathematics classroom are discussed.  相似文献   

19.
Publicly-available datasets, though useful for education, are often constructed for purposes that are quite different from students’ own. To investigate and model phenomena, then, students must learn how to repurpose the data. This paper reports on an emerging line of research that builds on work in data modeling, exploratory data analysis, and storytelling to examine and support students’ data repurposing. We ask: What opportunities emerge for students to reason about the relationship between data, context, and uncertainty when they repurpose public data to explore questions about their local communities? And, How can these opportunities be supported in classroom instruction and activity design? In two exploratory studies, students were asked to pose questions about their communities, use publicly-available data to investigate those questions, and create visual displays and written stories about their findings. Across both enactments, opportunities for reasoning emerged especially when students worked to reconcile (1) their own knowledge and experiences of the context from which data were collected with details of the data provided; and (2) their different emerging stories about the data with one another. We review how these opportunities unfolded within each enactment at the level of group and classroom, with attention to facilitator support.  相似文献   

20.
One classroom using two units from a Standards-based curriculum was the focus of a study designed to examine the effects of real-world contexts, delays in the introduction of formal mathematics terminology, and multiple function representations on student understanding. Students developed their own terminology for y-intercept, which was tightly connected to the meaningfulness and implicit/explicit temporality of the contexts that students investigated as part of their classroom activities. This terminology held great promise for promoting the concept of y-intercept within a multiple representation environment. However, the teacher's interpretation of different activities and his assumptions about the transparency of different representations, as well as students' past experiences left the student-generated terminology and the concept of y-intercept disconnected from one another. This resulted in student-generated terminology that had limited applicability, a fragile understanding of y-intercept within different representations, and for some students, interference between their invented terminology and the concept of y-intercept itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号