首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 282 毫秒
1.
A kinematic approach is considered whereby the wavenumber jump conditions in conjunction with the appropriate dispersion relations is applied to the investigation of the normal and oblique interaction of a plane acoustic wave with a plane shock wave. For the normal interaction of an acoustic wave with a stationary plane shock a logarithmic shift in the wave spectra is obtained. For the normal interaction with a moving shock front it is shown that for shock Mach numbers above a critical value, the frequency of the transmitted wave becomes negative. This results in the fact that the crests of the transmitted signal arrive at a fixed observer in a reverse order to their generation. Finally, the oblique interaction of an acoustic wave with a stationary shock is considered. The “Snell's Law” for the transmitted wave is derived and two special angles of incidence are identified. The first is a no-refraction angle: i.e., the transmitted wave angle is the same as the incident wave angle. The second is a critical angle such that for incident angles greater than this critical angle there is no transmitted wave. A necessary and sufficient condition for the existence of a transmitted wave is derived in terms of the speed of sound and Mach number of the fluid and the frequency and tangential wavenumber component of the incident wave.The dynamics aspects of the interaction concerning the determination of the frequency independent transmission coefficients and shock displacements are determined for the simple case of the normal interaction with a moving shock as an illustration.  相似文献   

2.
提出了一种求解非紧凑低马赫数运动边界散射流动诱发噪声的预测方法。该方法首先基于运动坐标系下的连续性方程和动量方程推导得到该坐标系下的波动方程及其积分解,然后在该坐标系下采用边界元方法求解得到非紧凑运动边界表面的声压,最后将求解得到的壁面声压回代到静止或运动坐标系下的积分方程中实现对远场噪声的预测。推导得到的积分方程适用于流体与飞机机身、高速列车车身及旋转叶片等非紧凑结构边界作用诱发噪声的预测。  相似文献   

3.
The path integral method is used to study the width of the wave packet of a relativistic charged particle interacting with a quantum electromagnetic field. A general expression is derived for the density distribution of a particle moving in arbitrary external potentials. An electron synchrotron with weak focusing is studied as a specific example, and the width of the wave packet of an electron moving in this accelerator is found. Zh. éksp. Teor. Fiz. 111, 1563–1578 (May 1997)  相似文献   

4.
The reasons for the erroneous writing of the substance conservation law at the moving fluid-fluid interface, which is commonly encountered in related publications, are analyzed. A mathematical statement of this law that is valid for any curved surface that has a nonzero curvature in its equilibrium state is derived in terms of vector analysis. The new writing is independent of the coordinates and can be used for analysis of relaxation phenomena associated with nonlinear wave motions.  相似文献   

5.
A class of cohesive solutions of moving glide dislocations with intersonic speeds has been derived on the basis of the fundamental equation of a moving dislocation introduced by Weertman in conjunction with a proposed generalized Bilby–Cottrell–Swinden–Dugdale model. In this model we assume a straight weak path within an infinite elastic plate. Two length scales, namely the width (thickness) of the weak path and the material intrinsic length, which scales strain-gradient-induced hardening and energy dissipation, are taken into account by applying the traction–separation law for the decohesion of the weak path. Dislocations propagate along this weak path with a speed higher than the shear wave speed. The accumulation of these moving dislocations forms a macroscale crack growth with a cohesive zone ahead of the crack tip. Similar to the Bilby–Cottrell–Swinden–Dugdale model, the remote enforced stress and/or stress-rate boundary conditions are represented as an equivalent crack surface traction associated with the dislocation distribution. The involved Cauchy integral and corresponding eigenvalue problem are solved using the algorithms introduced by Muskhelishvili and by Weertman. The problems associated with three types of decohesion law are constant traction, traction linearly dependent on separation, and separation- and separation-rate-dependent traction. These problems are solved using three different solution strategies: the direct-integration method, the iteration method and the Jacobi polynomial expansion respectively. The derived solutions provide explicit relations between the remote load propagation speed, the material intrinsic length, the weak path thickness and the strain-rate-hardening parameter. The solutions demonstrate that the intersonic speed region can be divided into two subdomains; steady-state propagation occurs within the subdomain where the propagation speeds are equal to or greater than the Eshelby speed (c s × 21/2, where c s is the shear wave speed). For a weak path with a finite width and the corresponding decohesion law scaled by material intrinsic length, an intersonic crack propagation will not take place if only a constant remote stress is imposed. A ‘steady-state’ crack surface load and/or remote stress-rate boundary condition, which can be considered as a point force or a distributed force with a constant distance to the moving crack tip, is required to maintain steady-state intersonic crack propagation.  相似文献   

6.
Phe general invariant integral based on the energy conservation law is introduced into physical mesomechanics, with taking into account the cosmic, gravitational, mass, elastic, thermal and electromagnetic energy of matter. Phe physical mesomechanics thus becomes a mega-mechanics embracing most of the scales of nature. Some basic laws following from the general invariant integral are indicated, including Coulomb’s law of electricity generalized for moving electric charges, Newton’s law of gravitation generalized for coupled gravitational/cosmic field, the Archimedes’ law of buoyancy generalized for bodies partially submerged in water, and others. Using the invariant integral the temperature track behind moving cracks and dislocations is found out, and the coupling of elastic and thermal energies is set up in fracturing and plastic flow, namely for opening mode cracks and edge dislocations. For porous materials saturated with a fluid or gas, the notion of binary continuum is used to introduce the corresponding invariant integrals. As applied to the horizontal drilling and hydrofracturing of boreholes in the Earth’ crust, the field of pressure and flow rate as well as the fluid output from both a horizontal borehole and a diskshape fracture issuing the borehole, are derived in the fluid extraction regime. A theory of fracking in shale gas/oil reservoirs is suggested for three basic regimes of the drill mud permeation into the multiply fractured rock region, with calculating the shape and volume of this region in terms of the geometry parameters and pressures of rock, drill mud and shale gas. Phe method of functional equations in the theory of a complex variable and the boundary layer method are also used to solve these problems.  相似文献   

7.
A general equation of condition is derived for holographic setups for which recording and reconstruction are invariant with respect to given translations or rotations of the hologram. The solutions are stated and discussed. Using an astigmatic reference wave, there is a setup which combines invariances in two degrees of freedom of translation with two of rotation. This is of particular interest for the holographic recording of data on a moving carrier.  相似文献   

8.
Several algebraic characterizations of vacuum type III metric fields are discussed. A covariant integral conservation law is obtained by introducing a divergence free vector density that is uniquely determined by the metric and Riemann tensors of a type III metric. In a region where the gravitational field is of type III almost everywhere, the vector density vanishes at a point if and only if the Riemann tensor vanishes there. The conserved quantity has the dimensions of energy but is probably not simply related to energy in the ordinary sense. The conservation law is interpreted as aHuyghen's principle for an intensity measured by measuring the relative accelerations due to the gravitational field. It is compared to a previously derived action conservation law for a classical, general relativistic electromagnertic field and with a covariant action conservation law that is valid in null (degeneate type II) metrics. Further propagation laws for null and type III waves are given under the assumption that the wave vector is hypersurface orthogonal. It is shown that in linear approximation the far and semi-far fields of a radiating quadrupole are null and type III respectively; the form of the conservation laws in these linearized metrics is discussed. In an appendix a “strongly” conserved form of the tensor ofBel andRobinson is suggested.  相似文献   

9.
The dependence of the complex frequency of radiation reflected from an inhomogeneity moving in a medium on the frequency of the incident radiation is found for inhomogeneous wave regimes. Explicit expressions for the plasma dispersion law of the medium are presented. The complex Doppler effect, where one (real) frequency of the incident radiation corresponds to two complex frequencies of the reflected radiation, is demonstrated.  相似文献   

10.
发散光束小尺度自聚焦特性的研究   总被引:5,自引:3,他引:2  
顾亚龙  朱健强 《光学学报》2006,26(11):734-1738
研究了发散光束的小尺度自聚焦效应。从非线性傍轴波动方程出发,利用坐标变换,推导出发散光束小尺度扰动的传输方程,进而得到小尺度扰动增长的临界频率、最大增长频率和相应B积分值的变化规律。研究了发散光束初始曲率半径对小尺度自聚焦效应的影响。结果表明,对于一定的传输距离,随着发散光束初始曲率半径的减小,小尺度扰动的最大增长频率减小,相应的最大增益减小,即B积分值也减小。对于一定的初始曲率半径,随着传输距离的增大,B积分值增长变缓,并最终停止。利用局部能量守恒定律研究了发散光束的成丝距离,发现小的初始曲率半径可以延长成丝距离。  相似文献   

11.
An exact non-reflecting boundary conditions based on a boundary integral equation or a modified Kirchhoff-type formula is derived for exterior three-dimensional wave equations. The Kirchhoff-type non-reflecting boundary condition is originally proposed by L. Ting and M.J. Miksis [J. Acoust. Soc. Am. 80 (1986) 1825] and numerically tested by D. Givoli and D. Cohen [J. Comput. Phys. 117 (1995) 102] for a spherically symmetric problem. The computational advantage of Ting–Miksis boundary condition is that its temporal non-locality is limited to a fixed amount of past information. However, a long-time instability is exhibited in testing numerical solutions by using a standard non-dissipative finite-difference scheme. The main purpose of this work is to present a new exact boundary condition and to eliminate the long-time instability. The proposed exact boundary condition can be considered as a limit case of Ting–Miksis boundary condition when the two artificial boundaries used in their method approach each other. Our boundary condition is actually a boundary integral equation on a single artificial boundary for wave equations, which is to be solved in conjunction with the interior wave equation. The new boundary condition needs only one artificial boundary, which can be of any shape, i.e., sphere, cubic surface, etc. It keeps all merits of the original Kirchhoff boundary condition such as restricting the temporal non-locality, free of numerical evaluation of any special functions and so on. Numerical approximation to the artificial boundary condition on cubic surface is derived and three-dimensional numerical tests are carried out on the cubic computational domain.  相似文献   

12.
The excitation of a tube wave in an infinite fluid-filled borehole by an external isotropic point source is considered. The solution to the problem is obtained in the form of a double integral with respect to the ray parameter (slowness) and frequency. The integral with respect to the slowness is transformed to a contour integral in the complex slowness plane and then reduced to the integral over the edges of the cut of the vertical slowness function and the semiresidues at the poles. An asymptotic expression for the wave field in the borehole is obtained with allowance for the radiation condition at infinity. It is shown that, when a longitudinal spherical wave is incident on the borehole, only one low-frequency Stoneley wave is excited and not two, as was assumed earlier [1].  相似文献   

13.
Variational models provide an alternative approach to standard sharp interface models for calculating the motion of phase boundaries during solidification. We present a correspondence between objective functions used in variational simulations and specific thermodynamic functions. We demonstrate that variational models with the proposed identification of variables are consistent with nonequilibrium thermodynamics. Variational models are derived for solidification of a pure material and then generalized to obtain a model for solidification of a binary alloy. Conservation laws for internal energy and chemical species and the law of local entropy production are expressed in integral form and used to develop variational principles in which a "free energy," which includes an interfacial contribution, is shown to be a decreasing function of time. This free energy takes on its minimum value over any short time interval, subject to the laws of conservation of internal energy and chemical species. A variational simulation based on this model is described, and shown for small time intervals to provide the Gibbs-Thomson boundary condition at the solid-liquid interface.  相似文献   

14.
Using the discrete source method, we develop an algorithm for solving the three-dimensional problem of wave scattering by a plane grating consisting of acoustically soft or acoustically stiff bodies. An efficient algorithm is proposed for determining the periodic Green’s function of the grating. Numerical results are obtained for different geometries of the grating elements. The fulfillment of the energy conservation law is verified along with the fulfillment of the boundary condition at the surface of the central grating element.  相似文献   

15.
The scattering matrix of a point contact between one-dimensional coherent conductors is considered. It is shown that the flux conservation law, time-reversal symmetry, and an hypothesis of continuity of the wave function lead to parametrization of the scattering matrix by a single real parameter, regardless of the number of conductors connected by the contact. The condition of maximum transmission fixes this parameter and thereby uniquely defines the scattering matrix. The condition of flux conservation then reduces to the condition that the sum of the derivatives of the wave function with respect to the directions of the conductors vanish. Possible applications of the model considered to experimentally feasible arrays of one-dimensional elements are discussed. Fiz. Tverd. Tela (St. Petersburg) 41, 2070–2074 (November 1999)  相似文献   

16.
Starting from the algebraically reduced PoincaréN=1 superspace Noether-current, represented by four superfields obeying a conservation law, the question of further reductions is investigated. Each reduction is defined by a transformation of the four superfields leaving the conservation law as well as certain superfield currents built from them invariant. Two requirements for these superfield currents are stated and the corresponding equations are solved. An additional requirement related to, the uniqueness of the component currents is postulated.  相似文献   

17.
18.
Wave nature of stationary moving striations in helium and neon discharges in a uniform longitudinal magnetic field is studied. With the increase of the magnetic field, the frequency of natural striations decreases, while the wave length increases, and they damp out at high field region. Artificial excitations in these gases show that the wave length is proportional to the excitation frequency for given magnetic field and the slope of linear lines increases with the field. These wave nature of striations is explained following the dispersion relation derived from the consideration of waves of ionization and including effects of the magnetic field on the ionization.  相似文献   

19.
The isolation of the vibration due to moving loads using pile rows embedded in a poroelastic half-space is investigated in this study. Based on Biot's theory and integral transform method, the free field solution for a moving load applied on the surface of a poroelastic half-space and the fundamental solution for a harmonic circular patch load applied in the poroelastic half-space are derived first. Using Muki and Sternberg's method and the fundamental solution for the circular patch load as well as the obtained free field solution for the moving load, the second kind of Fredholm integral equations in the frequency domain describing the dynamic interaction between pile rows and the poroelastic half-space is developed. Numerical solution of the frequency domain integral equations and numerical inversion of the Fourier transform yield the time domain response of the pile–soil system. Comparison of our results with some known results shows that our results are in a good agreement with existing ones. Numerical results of this study show that velocity of moving loads has an important impact on the vibration isolation effect of pile rows. The same pile row has a better vibration isolation effect for the lower speed moving loads than for the higher speed ones. Also, the optimal length of piles for higher speed moving loads is shorter than that for lower speed moving loads. Moreover, stiff pile rows tend to produce a better vibration isolation effect than flexible pile rows do.  相似文献   

20.
This paper examines the sound insulation of a single-leaf wall driven by a spherical wave. The transmitted sound field of an infinite elastic plate under a spherical wave incidence is theoretically analyzed and insulation mechanisms are considered. The displacement of the plate is formulated using the Hankel transform in wavenumber space and the transmitted sound pressure in the far-field is obtained by Rayleigh’s formula in an explicit closed form. Moreover, a reduction index is also derived in a closed form by introducing an approximation into the vibration characteristics of the plate. Deterioration of the insulation performance under the spherical wave incidence is caused by an apparent decrease of wall impedance that depends on the directivity of the transmitted sound wave. The mass law for a spherical wave incidence is different from that for a normal plane wave incidence: doubling the weight of the wall or the frequency gives an increase of 3 dB (c.f. 6 dB for a normal plane wave incidence), which is also smaller than the field incidence mass law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号