首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We consider a semigroup FP\textfin+ ( \mathfrakS\textfin( \mathbbN ) ) FP_{\text{fin}}^{+} \left( {{\mathfrak{S}_{\text{fin}}}\left( \mathbb{N} \right)} \right) defined as a finitary factor power of a finitary symmetric group of countable order. It is proved that all automorphisms of FP\textfin+ ( \mathfrakS\textfin( \mathbbN ) ) FP_{\text{fin}}^{+} \left( {{\mathfrak{S}_{\text{fin}}}\left( \mathbb{N} \right)} \right) are induced by permutations from \mathfrakS( \mathbbN ) \mathfrak{S}\left( \mathbb{N} \right) .  相似文献   

2.
Let V be a 2m-dimensional symplectic vector space over an algebraically closed field K. Let $ \mathfrak{B}_n^{(f)} Let V be a 2m-dimensional symplectic vector space over an algebraically closed field K. Let \mathfrakBn(f) \mathfrak{B}_n^{(f)} be the two-sided ideal of the Brauer algebra \mathfrakBn( - 2m ) {\mathfrak{B}_n}\left( { - 2m} \right) over K generated by e 1 e 3⋯ e 2f-1 where 0 ≤ f ≤ [n/2]. Let HTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} be the subspace of partial-harmonic tensors of valence f in V n . In this paper we prove that dimHTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} and dim \textEn\textdK\textSp(V)( V ?n \mathord
/ \vphantom V ?n V ?n V ?n\mathfrakBn(f) ) {\text{En}}{{\text{d}}_{K{\text{Sp}}(V)}}\left( {{{{V^{ \otimes n}}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}} {{V^{ \otimes n}}}}} \right.} {{V^{ \otimes n}}}}\mathfrak{B}_n^{(f)}} \right) are both independent of K, and the natural homomorphism from \mathfrakBn( - 2m ) \mathord/ \vphantom ( - 2m ) \mathfrakBn(f) \mathfrakBn(f) {\mathfrak{B}_n}{{\left( { - 2m} \right)} \mathord{\left/{\vphantom {{\left( { - 2m} \right)} {\mathfrak{B}_n^{(f)}}}} \right.} {\mathfrak{B}_n^{(f)}}} to \textEn\textdK\textSp(V)( V ?n \mathord/ \vphantom V ?n V ?n V ?n\mathfrakBn(f) ) {\text{En}}{{\text{d}}_{K{\text{Sp}}(V)}}\left( {{{{V^{ \otimes n}}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}} {{V^{ \otimes n}}}}} \right.} {{V^{ \otimes n}}}}\mathfrak{B}_n^{(f)}} \right) is always surjective. We show that HTf ?n \mathcal{H}\mathcal{T}_f^{ \otimes n} has a Weyl filtration and is isomorphic to the dual of V ?n\mathfrakBn(f) \mathord/ \vphantom V ?n\mathfrakBn(f) V V ?n\mathfrakBn( f + 1 ) {{{{V^{ \otimes n}}\mathfrak{B}_n^{(f)}} \mathord{\left/{\vphantom {{{V^{ \otimes n}}\mathfrak{B}_n^{(f)}} V}} \right.} V}^{ \otimes n}}\mathfrak{B}_n^{\left( {f + 1} \right)} as an \textSp(V) - ( \mathfrakBn( - 2m ) \mathord/ \vphantom ( - 2m ) \mathfrakBn( f + 1 ) \mathfrakBn( f + 1 ) ) {\text{Sp}}(V) - \left( {{\mathfrak{B}_n}{{\left( { - 2m} \right)} \mathord{\left/{\vphantom {{\left( { - 2m} \right)} {\mathfrak{B}_n^{\left( {f + 1} \right)}}}} \right.} {\mathfrak{B}_n^{\left( {f + 1} \right)}}}} \right) -bimodule. We obtain an \textSp(V) - \mathfrakBn {\text{Sp}}(V) - {\mathfrak{B}_n} -bimodules filtration of V n such that each successive quotient is isomorphic to some ?( l) ?zg,l\mathfrakBn \nabla \left( \lambda \right) \otimes {z_{g,\lambda }}{\mathfrak{B}_n} with λ ⊢ n 2g, ℓ(λ)≤m and 0 ≤ g ≤ [n/2], where ∇(λ) is the co-Weyl module associated to λ and z g is an explicitly constructed maximal vector of weight λ. As a byproduct, we show that each right \mathfrakBn {\mathfrak{B}_n} -module zg,l\mathfrakBn {z_{g,\lambda }}{\mathfrak{B}_n} is integrally defined and stable under base change.  相似文献   

3.
In this paper, it is shown that the dual [(\textQord)\tilde]\mathfrakA \widetilde{\text{Qord}}\mathfrak{A} of the quasiorder lattice of any algebra \mathfrakA \mathfrak{A} is isomorphic to a sublattice of the topology lattice á( \mathfrakA ) \Im \left( \mathfrak{A} \right) . Further, if \mathfrakA \mathfrak{A} is a finite algebra, then [(\textQord)\tilde]\mathfrakA @ á( \mathfrakA ) \widetilde{\text{Qord}}\mathfrak{A} \cong \Im \left( \mathfrak{A} \right) . We give a sufficient condition for the lattices [(\textCon)\tilde]\mathfrakA\text, [(\textQord)\tilde]\mathfrakA \widetilde{\text{Con}}\mathfrak{A}{\text{,}} \widetilde{\text{Qord}}\mathfrak{A} , and á( \mathfrakA ) \Im \left( \mathfrak{A} \right) . to be pairwise isomorphic. These results are applied to investigate topology lattices and quasiorder lattices of unary algebras.  相似文献   

4.
5.
Let G be a finite soluble group and F\mathfrakX(G) {\Phi_\mathfrak{X}}(G) an intersection of all those maximal subgroups M of G for which G
/ \textCor\texteG(M) ? \mathfrakX {{G} \left/ {{{\text{Cor}}{{\text{e}}_G}(M)}} \right.} \in \mathfrak{X} . We look at properties of a section F( G / F\mathfrakX(G) ) F\left( {{{G} \left/ {{{\Phi_\mathfrak{X}}(G)}} \right.}} \right) , which is definable for any class \mathfrakX \mathfrak{X} of primitive groups and is called an \mathfrakX \mathfrak{X} -crown of a group G. Of particular importance is the case where all groups in \mathfrakX \mathfrak{X} have equal socle length.  相似文献   

6.
Let U( \mathfrakg,e ) U\left( {\mathfrak{g},e} \right) be the finite W-algebra associated with a nilpotent element e in a complex simple Lie algebra \mathfrakg = \textLie(G) \mathfrak{g} = {\text{Lie}}(G) and let I be a primitive ideal of the enveloping algebra U( \mathfrakg ) U\left( \mathfrak{g} \right) whose associated variety equals the Zariski closure of the nilpotent orbit (Ad G) e. Then it is known that I = \textAn\textnU( \mathfrakg )( Qe ?U( \mathfrakg,e )V ) I = {\text{An}}{{\text{n}}_{U\left( \mathfrak{g} \right)}}\left( {{Q_e}{ \otimes_{U\left( {\mathfrak{g},e} \right)}}V} \right) for some finite dimensional irreducible U( \mathfrakg,e ) U\left( {\mathfrak{g},e} \right) -module V, where Q e stands for the generalised Gelfand–Graev \mathfrakg \mathfrak{g} -module associated with e. The main goal of this paper is to prove that the Goldie rank of the primitive quotient U( \mathfrakg )
/ I {{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.} always divides dim V. For \mathfrakg = \mathfraks\mathfrakln \mathfrak{g} = \mathfrak{s}{\mathfrak{l}_n} , we use a theorem of Joseph on Goldie fields of primitive quotients of U( \mathfrakg ) U\left( \mathfrak{g} \right) to establish the equality \textrk( U( \mathfrakg ) / I ) = dimV {\text{rk}}\left( {{{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.}} \right) = \dim V . We show that this equality continues to hold for \mathfrakg \ncong \mathfraks\mathfrakln \mathfrak{g} \ncong \mathfrak{s}{\mathfrak{l}_n} provided that the Goldie field of U( \mathfrakg ) / I {{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.} is isomorphic to a Weyl skew-field and use this result to disprove Joseph’s version of the Gelfand–Kirillov conjecture formulated in the mid-1970s.  相似文献   

7.
Let e be a nilpotent element of a complex simple Lie algebra $ \mathfrak{g} Let e be a nilpotent element of a complex simple Lie algebra \mathfrakg \mathfrak{g} . The weighted Dynkin diagram of e, D(e) \mathcal{D}(e) , is said to be divisible if D(e)
/ 2 {{{\mathcal{D}(e)}} \left/ {2} \right.} is again a weighted Dynkin diagram. The corresponding pair of nilpotent orbits is said to be friendly. In this paper we classify the friendly pairs and describe some of their properties. Any subalgebra \mathfraks\mathfrakl3 \mathfrak{s}{\mathfrak{l}_3} in \mathfrakg \mathfrak{g} gives rise to a friendly pair; such pairs are called A2-pairs. If Gx is the lower orbit in an A2-pair, then x ? [ \mathfrakgx,\mathfrakgx ] x \in \left[ {{\mathfrak{g}^x},{\mathfrak{g}^x}} \right] , i.e., x is reachable. We also show that \mathfrakgx {\mathfrak{g}^x} has other interesting properties. Let \mathfrakgx = ?i \geqslant 0\mathfrakgx(i) {\mathfrak{g}^x} = { \oplus_{i \geqslant 0}}{\mathfrak{g}^x}(i) be the \mathbbZ - \textgrading \mathbb{Z} - {\text{grading}} determined by a characteristic of x. We prove that \mathfrakgx {\mathfrak{g}^x} is generated by the Levi subalgebra \mathfrakgx(0) {\mathfrak{g}^x}(0) and two elements of \mathfrakgx(1) {\mathfrak{g}^x}(1) . In particular, the nilpotent radical of \mathfrakgx {\mathfrak{g}^x} is generated by the subspace \mathfrakgx(1) {\mathfrak{g}^x}(1) .  相似文献   

8.
We consider a relationship between two sets of extensions of a finite finitely additive measure μ defined on an algebra \mathfrakB \mathfrak{B} of sets to a broader algebra \mathfrakA \mathfrak{A} . These sets are the set ex S μ of all extreme extensions of the measure μ and the set H μ of all extensions defined as l(A) = [^(m)]( h(A) ),   A ? \mathfrakA \lambda (A) = \hat{\mu }\left( {h(A)} \right),\,\,\,A \in \mathfrak{A} , where [^(m)] \hat{\mu } is a quotient measure on the algebra \mathfrakB
/ m {{\mathfrak{B}} \left/ {\mu } \right.} of the classes of μ-equivalence and h:\mathfrakA ? \mathfrakB / m h:\mathfrak{A} \to {{\mathfrak{B}} \left/ {\mu } \right.} is a homomorphism extending the canonical homomorphism \mathfrakB \mathfrak{B} to \mathfrakB / m {{\mathfrak{B}} \left/ {\mu } \right.} . We study the properties of extensions from H μ and present necessary and sufficient conditions for the existence of these extensions, as well as the conditions under which the sets ex S μ and H μ coincide.  相似文献   

9.
Let ${\mathfrak{g}}Let \mathfrakg{\mathfrak{g}} be a finite dimensional simple Lie algebra over an algebraically closed field \mathbbK\mathbb{K} of characteristic 0. Let \mathfrakg\mathbbZ{\mathfrak{g}}_{{\mathbb{Z}}} be a Chevalley ℤ-form of \mathfrakg{\mathfrak{g}} and \mathfrakg\Bbbk=\mathfrakg\mathbbZ?\mathbbZ\Bbbk{\mathfrak{g}}_{\Bbbk}={\mathfrak{g}}_{{\mathbb{Z}}}\otimes _{{\mathbb{Z}}}\Bbbk, where \Bbbk\Bbbk is the algebraic closure of  \mathbbFp{\mathbb{F}}_{p}. Let G\BbbkG_{\Bbbk} be a simple, simply connected algebraic \Bbbk\Bbbk-group with \operatornameLie(G\Bbbk)=\mathfrakg\Bbbk\operatorname{Lie}(G_{\Bbbk})={\mathfrak{g}}_{\Bbbk}. In this paper, we apply recent results of Rudolf Tange on the fraction field of the centre of the universal enveloping algebra U(\mathfrakg\Bbbk)U({\mathfrak{g}}_{\Bbbk}) to show that if the Gelfand–Kirillov conjecture (from 1966) holds for \mathfrakg{\mathfrak{g}}, then for all p≫0 the field of rational functions \Bbbk (\mathfrakg\Bbbk)\Bbbk ({\mathfrak{g}}_{\Bbbk}) is purely transcendental over its subfield \Bbbk(\mathfrakg\Bbbk)G\Bbbk\Bbbk({\mathfrak{g}}_{\Bbbk})^{G_{\Bbbk}}. Very recently, it was proved by Colliot-Thélène, Kunyavskiĭ, Popov, and Reichstein that the field of rational functions \mathbbK(\mathfrakg){\mathbb{K}}({\mathfrak{g}}) is not purely transcendental over its subfield \mathbbK(\mathfrakg)\mathfrakg{\mathbb{K}}({\mathfrak{g}})^{\mathfrak{g}} if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4. We prove a modular version of this result (valid for p≫0) and use it to show that, in characteristic 0, the Gelfand–Kirillov conjecture fails for the simple Lie algebras of the above types. In other words, if \mathfrakg{\mathfrak{g}} is of type B n , n≥3, D n , n≥4, E6, E7, E8 or F4, then the Lie field of \mathfrakg{\mathfrak{g}} is more complicated than expected.  相似文献   

10.
We generalize a Hilbert space result by Auscher, McIntosh and Nahmod to arbitrary Banach spaces X and to not densely defined injective sectorial operators A. A convenient tool proves to be a certain universal extrapolation space associated with A. We characterize the real interpolation space ( X,D( Aa ) ?R( Aa ) )q,p{\left( {X,\mathcal{D}{\left( {A^{\alpha } } \right)} \cap \mathcal{R}{\left( {A^{\alpha } } \right)}} \right)}_{{\theta ,p}} as
{ x  ?  X|t - q\textRea y1 ( tA )xt - q\textRea y2 ( tA )x ? L*p ( ( 0,¥ );X ) } {\left\{ {x\, \in \,X|t^{{ - \theta {\text{Re}}\alpha }} \psi _{1} {\left( {tA} \right)}x,\,t^{{ - \theta {\text{Re}}\alpha }} \psi _{2} {\left( {tA} \right)}x \in L_{*}^{p} {\left( {{\left( {0,\infty } \right)};X} \right)}} \right\}}  相似文献   

11.
We investigate splitting number and reaping number for the structure (ω) ω of infinite partitions of ω. We prove that \mathfrakrdnon(M),non(N),\mathfrakd{\mathfrak{r}_{d}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N}),\mathfrak{d}} and \mathfraksd 3 \mathfrakb{\mathfrak{s}_{d}\geq\mathfrak{b}} . We also show the consistency results ${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})}${\mathfrak{r}_{d} > \mathfrak{b}, \mathfrak{s}_{d} < \mathfrak{d}, \mathfrak{s}_{d} < \mathfrak{r}, \mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})} and ${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})}${\mathfrak{s}_{d} > \mathsf{cof}(\mathcal{M})} . To prove the consistency \mathfrakrd < add(M){\mathfrak{r}_{d} < \mathsf{add}(\mathcal{M})} and \mathfraksd < cof(M){\mathfrak{s}_{d} < \mathsf{cof}(\mathcal{M})} we introduce new cardinal invariants \mathfrakrpair{\mathfrak{r}_{pair}} and \mathfrakspair{\mathfrak{s}_{pair}} . We also study the relation between \mathfrakrpair, \mathfrakspair{\mathfrak{r}_{pair}, \mathfrak{s}_{pair}} and other cardinal invariants. We show that cov(M),cov(N) £ \mathfrakrpair £ \mathfraksd,\mathfrakr{\mathsf{cov}(\mathcal{M}),\mathsf{cov}(\mathcal{N})\leq\mathfrak{r}_{pair}\leq\mathfrak{s}_{d},\mathfrak{r}} and \mathfraks £ \mathfrakspairnon(M),non(N){\mathfrak{s}\leq\mathfrak{s}_{pair}\leq\mathsf{non}(\mathcal{M}),\mathsf{non}(\mathcal{N})} .  相似文献   

12.
Let \mathfraka \mathfrak{a} be an algebraic Lie subalgebra of a simple Lie algebra \mathfrakg \mathfrak{g} with index \mathfraka \mathfrak{a}  ≤ rank \mathfrakg \mathfrak{g} . Let Y( \mathfraka ) Y\left( \mathfrak{a} \right) denote the algebra of \mathfraka \mathfrak{a} invariant polynomial functions on \mathfraka* {\mathfrak{a}^*} . An algebraic slice for \mathfraka \mathfrak{a} is an affine subspace η + V with h ? \mathfraka* \eta \in {\mathfrak{a}^*} and V ì \mathfraka* V \subset {\mathfrak{a}^*} subspace of dimension index \mathfraka \mathfrak{a} such that restriction of function induces an isomorphism of Y( \mathfraka ) Y\left( \mathfrak{a} \right) onto the algebra R[η + V] of regular functions on η + V. Slices have been obtained in a number of cases through the construction of an adapted pair (h, η) in which h ? \mathfraka h \in \mathfrak{a} is ad-semisimple, η is a regular element of \mathfraka* {\mathfrak{a}^*} which is an eigenvector for h of eigenvalue minus one and V is an h stable complement to ( \textad  \mathfraka )h \left( {{\text{ad}}\;\mathfrak{a}} \right)\eta in \mathfraka* {\mathfrak{a}^*} . The classical case is for \mathfrakg \mathfrak{g} semisimple [16], [17]. Yet rather recently many other cases have been provided; for example, if \mathfrakg \mathfrak{g} is of type A and \mathfraka \mathfrak{a} is a “truncated biparabolic” [12] or a centralizer [13]. In some of these cases (in particular when the biparabolic is a Borel subalgebra) it was found [13], [14], that η could be taken to be the restriction of a regular nilpotent element in \mathfrakg \mathfrak{g} . Moreover, this calculation suggested [13] how to construct slices outside type A when no adapted pair exists. This article makes a first step in taking these ideas further. Specifically, let \mathfraka \mathfrak{a} be a truncated biparabolic of index one. (This only arises if \mathfrakg \mathfrak{g} is of type A and \mathfraka \mathfrak{a} is the derived algebra of a parabolic subalgebra whose Levi factor has just two blocks whose sizes are coprime.) In this case it is shown that the second member of an adapted pair (h, η) for \mathfraka \mathfrak{a} is the restriction of a particularly carefully chosen regular nilpotent element of \mathfrakg \mathfrak{g} . A by-product of our analysis is the construction of a map from the set of pairs of coprime integers to the set of all finite ordered sequences of ±1.  相似文献   

13.
Let X1, X2, ... be i.i.d. random variables satisfying the condition
\textE X12 \text elX1 < ¥\text for\text some\text l > 0.{\text{E }}X_1^2 {\text{ }}e^{\lambda X_1 } < \infty {\text{ }}for{\text{ }}some{\text{ }}\lambda >0.  相似文献   

14.
Let H*( Be ) {H^*}\left( {{\mathcal{B}_e}} \right) be the total Springer representation of W for the nilpotent element e in a simple Lie algebra \mathfrakg \mathfrak{g} . Let Λ i V denote the ith exterior power of the reflection representation V of W. The focus of this paper is on the algebra of W-invariants in
H*( Be ) ?L*V {H^*}\left( {{\mathcal{B}_e}} \right) \otimes {\Lambda^*}V  相似文献   

15.
Analogs of the classical Sylvester theorem have been known for matrices with entries in noncommutative algebras including the quantized algebra of functions on GLN and the Yangian for $$ \mathfrak{g}\mathfrak{l}_{{N}} $$ . We prove a version of this theorem for the twisted Yangians $$ {\text{Y(}}\mathfrak{g}_{N} {\text{)}} $$associated with the orthogonal and symplectic Lie algebras $$ \mathfrak{g}_{N} = \mathfrak{o}_{N} {\text{ or }}\mathfrak{s}\mathfrak{p}_{N} $$. This gives rise to representations of the twisted Yangian $$ {\text{Y}}{\left( {\mathfrak{g}_{{N - M}} } \right)} $$ on the space of homomorphisms $$ {\text{Hom}}_{{\mathfrak{g}_{M} }} {\left( {W,V} \right)} $$, where W and V are finite-dimensional irreducible modules over $$ \mathfrak{g}_{{M}} {\text{ and }}\mathfrak{g}_{{N}} $$, respectively. In the symplectic case these representations turn out to be irreducible and we identify them by calculating the corresponding Drinfeld polynomials.We also apply the quantum Sylvester theorem to realize the twisted Yangian as a projective limit of certain centralizers in universal enveloping algebras.  相似文献   

16.
Let (R,\mathfrak m){(R,\mathfrak m)} be a noetherian, local ring with completion [^(R)]{\hat{R}} . We show that R ì [^(R)]{R \subset \hat{R}} satisfies the condition Going up if and only if there exists to every artinian R-module M with AnnR(M) ì \mathfrakp{{\rm Ann}_R(M) \subset \mathfrak{p}} a submodule U ì M{U \subset M} with AnnR(U)=\mathfrakp.{{\rm {Ann}}_R(U)=\mathfrak{p}.} This is further equivalent to R being formal catenary, to α(R) = 0 and to Hd\mathfrakq/\mathfrakp(R/\mathfrakp)=0{H^d_{\mathfrak{q}/\mathfrak{p}}(R/\mathfrak{p})=0} for all prime ideals \mathfrakp ì \mathfrakq \subsetneq \mathfrakm{\mathfrak{p} \subset \mathfrak{q} \subsetneq \mathfrak{m}} where d = dim(R/\mathfrakp){d = {\rm {dim}}(R/\mathfrak{p})}.  相似文献   

17.
For an integer m ≥ 4, we define a set of 2[m/2] × 2[m/2] matrices γj (m), (j = 0, 1,..., m - 1) which satisfy γj (m)γk (m) +γk (m)γj (m) = 2ηjk (m)I[m/2], where (ηjk (m)) 0≤j,k≤m-1 is a diagonal matrix, the first diagonal element of which is 1 and the others are -1, I[m/2] is a 2[m/1] × 2[m/2] identity matrix with [m/2] being the integer part of m/2. For m = 4 and 5, the representation (m) of the Lorentz Spin group is known. For m≥ 6, we prove that (i) when m = 2n, (n ≥ 3), (m) is the group generated by the set of matrices {T|T=1/√ξ((I+k) 0 + 0 I-K) ( U 0 0 U), (ii) when m = 2n + 1 (n≥ 3), (m) is generated by the set of matrices {T|T=1/√ξ(I -k^- k I)U,U∈ (m-1),ξ=1-m-2 ∑k,j=0 ηkja^k a^j〉0, K=i[m-3 ∑j=0 a^j γj(m-2)+a^(m-2) In],K^-=i[m-3∑j=0 a^j γj(m-2)-a^(m-2) In]}  相似文献   

18.
Analogs of the classical Sylvester theorem have been known for matrices with entries in noncommutative algebras including the quantized algebra of functions on GL N and the Yangian for $$ \mathfrak{g}\mathfrak{l}_{{N}} $$ . We prove a version of this theorem for the twisted Yangians $$ {\text{Y(}}\mathfrak{g}_{N} {\text{)}} $$associated with the orthogonal and symplectic Lie algebras $$ \mathfrak{g}_{N} = \mathfrak{o}_{N} {\text{ or }}\mathfrak{s}\mathfrak{p}_{N} $$. This gives rise to representations of the twisted Yangian $$ {\text{Y}}{\left( {\mathfrak{g}_{{N - M}} } \right)} $$ on the space of homomorphisms $$ {\text{Hom}}_{{\mathfrak{g}_{M} }} {\left( {W,V} \right)} $$, where W and V are finite-dimensional irreducible modules over $$ \mathfrak{g}_{{M}} {\text{ and }}\mathfrak{g}_{{N}} $$, respectively. In the symplectic case these representations turn out to be irreducible and we identify them by calculating the corresponding Drinfeld polynomials.We also apply the quantum Sylvester theorem to realize the twisted Yangian as a projective limit of certain centralizers in universal enveloping algebras.  相似文献   

19.
A string is a pair (L, \mathfrakm){(L, \mathfrak{m})} where L ? [0, ¥]{L \in[0, \infty]} and \mathfrakm{\mathfrak{m}} is a positive, possibly unbounded, Borel measure supported on [0, L]; we think of L as the length of the string and of \mathfrakm{\mathfrak{m}} as its mass density. To each string a differential operator acting in the space L2(\mathfrakm){L^2(\mathfrak{m})} is associated. Namely, the Kreĭn–Feller differential operator -D\mathfrakmDx{-D_{\mathfrak{m}}D_x} ; its eigenvalue equation can be written, e.g., as
f(x) + z ò0L f(yd\mathfrakm(y) = 0,    x ? \mathbb Rf(0-) = 0.f^{\prime}(x) + z \int_0^L f(y)\,d\mathfrak{m}(y) = 0,\quad x \in\mathbb R,\ f^{\prime}(0-) = 0.  相似文献   

20.
Let k [n] = k[x 1,…, x n ] be the polynomial algebra in n variables and let \mathbbAn = \textSpec  \boldk[ n ] {\mathbb{A}^n} = {\text{Spec}}\;{{\bold{k}}^{\left[ n \right]}} . In this note we show that the root vectors of \textAu\textt*( \mathbbAn ) {\text{Au}}{{\text{t}}^*}\left( {{\mathbb{A}^n}} \right) , the subgroup of volume preserving automorphisms in the affine Cremona group \textAut( \mathbbAn ) {\text{Aut}}\left( {{\mathbb{A}^n}} \right) , with respect to the diagonal torus are exactly the locally nilpotent derivations x α (∂/∂x i ), where x α is any monomial not depending on x i . This answers a question posed by Popov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号