首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes the preconcentration of the biomarker cardiac troponin I (cTnI) and a fluorescent protein (R-phycoerythrin) using cationic isotachophoresis (ITP) in a 3.9 cm long poly(methyl methacrylate) (PMMA) microfluidic chip. The microfluidic chip includes a channel with a 5× reduction in depth and a 10× reduction in width. Thus, the overall cross-sectional area decreases by 50× from inlet (anode) to outlet (cathode). The concentration is inversely proportional to the cross-sectional area so that as proteins migrate through the reductions, the concentrations increase proportionally. In addition, the proteins gain additional concentration by ITP. We observe that by performing ITP in a cross-sectional area reducing microfluidic chip we can attain concentration factors greater than 10,000. The starting concentration of cTnI was 2.3 μg mL?1 and the final concentration after ITP concentration in the microfluidic chip was 25.52 ± 1.25 mg mL?1. To the author's knowledge this is the first attempt at concentrating the cardiac biomarker cTnI by ITP. This experimental approach could be coupled to an immunoassay based technique and has the potential to lower limits of detection, increase sensitivity, and quantify different isolated cTnI phosphorylation states.  相似文献   

2.
Cationic ITP was used to separate and concentrate fluorescently tagged cardiac troponin I (cTnI) from two proteins with similar isoelectric properties in a PMMA straight‐channel microfluidic chip. In an initial set of experiments, cTnI was effectively separated from R‐Phycoerythrin using cationic ITP in a pH 8 buffer system. Then, a second set of experiments was conducted in which cTnI was separated from a serum contaminant, albumin. Each experiment took ~10 min or less at low electric field strengths (34 V/cm) and demonstrated that cationic ITP could be used as an on‐chip removal technique to isolate cTnI from albumin. In addition to the experimental work, a 1D numerical simulation of our cationic ITP experiments has been included to qualitatively validate experimental observations.  相似文献   

3.
This paper describes both the experimental application and 3-D numerical simulation of isotachophoresis (ITP) in a 3.2 cm long "cascade" poly(methyl methacrylate) (PMMA) microfluidic chip. The microchip includes 10 × reductions in both the width and depth of the microchannel, which decreases the overall cross-sectional area by a factor of 100 between the inlet (cathode) and outlet (anode). A 3-D numerical simulation of ITP is outlined and is a first example of an ITP simulation in three dimensions. The 3-D numerical simulation uses COMSOL Multiphysics v4.0a to concentrate two generic proteins and monitor protein migration through the microchannel. In performing an ITP simulation on this microchip platform, we observe an increase in concentration by over a factor of more than 10,000 due to the combination of ITP stacking and the reduction in cross-sectional area. Two fluorescent proteins, green fluorescent protein and R-phycoerythrin, were used to experimentally visualize ITP through the fabricated microfluidic chip. The initial concentration of each protein in the sample was 1.995 μg/mL and, after preconcentration by ITP, the final concentrations of the two fluorescent proteins were 32.57 ± 3.63 and 22.81 ± 4.61 mg/mL, respectively. Thus, experimentally the two fluorescent proteins were concentrated by over a factor of 10,000 and show good qualitative agreement with our simulation results.  相似文献   

4.
Portable and field deployable analytical instruments are attractive in many fields including medical diagnostics, where point of care and on-site diagnostics systems capable of providing rapid quantitative results have the potential to vastly improve the productivity and the quality of medical care. Isotachophoresis (ITP) is a well known electrophoretic separation technique previously demonstrated as suitable for miniaturization in microfluidic chip format (chip-ITP). In this work, a purpose-designed ITP chip compatible with a commercial end-used targeted microfluidic system was used to study different injection protocols and to evaluate the effect of the length of the separation channel on the analytical performance. The in-house ITP chips were made from Corning glass and compared to the commercial DNA chip for the ITP separation of anions from the hydrodynamic injection of human serum. Using the in-house ITP chip the isotachophoretic step of lactate from human serum was approximately two times longer. The results of this research suggested that microfluidic ITP with indirect fluorescence detection is a viable technique for separation of organic acids in human serum samples, especially when a chip with suitable design is used.  相似文献   

5.
Sample pre-concentration by isotachophoresis in microfluidic devices   总被引:1,自引:0,他引:1  
We have designed microfluidic devices with the aim of coupling isotachophoresis (ITP) with zone electrophoresis (ZE) as a method to increase the concentration limit of detection in microfluidic devices. We used plastic multi-channel chips, designed with long sample injection channel segments, to increase the sample loading. The chip was designed to allow stacking of the sample into a narrow band by discontinuous ITP buffers and subsequent separation in the ZE mode. In the ITP-ZE mode, with a 2-cm long sample injection plug, sensitivity was increased by 400-fold over chip ZE and we found that the separation performance after the ITP stacking was comparable to that of regular chip ZE. We report sub-picomolar limits of detection of fluorescently labeled ACLARA eTag reporter molecules electrokinetically injected from cell lysate sample matrixes containing moderate salt concentrations. We evaluated sample injections from buffers with varied ionic strengths and found that efficient stacking and separations were obtained in both low and high conductivity buffers, including physiological buffer with at least 140 mM salt. We applied ITP-ZE to the analysis of a cell surface protease (ADAM 17) which used live intact cells in physiological buffers with detection limits below 10 cells/assay.  相似文献   

6.
We have developed a sensitive, specific, rapid and low cost picoliter microsphere-based platform for bioanalyte detection and quantification. In this method, a biological sample, biosensing microspheres, and fluorescently labeled detection (secondary) antibodies are co-encapsulated to capture the analyte (here: human anti-tetanus immunoglobulin G) on the surface of the microsphere in microfluidic pL-sized droplets. The absorption of the analyte and detecting antibodies on the microsphere concentrate the fluorescent signal in correlation with analyte concentration. Using our platform and commercially available antibodies, we were able to quantify anti-tetanus antibodies in human serum. In comparison to standard bulk immunosorbent assays, the microfluidic droplet platform presented here reduces the reagent volume by four orders of magnitude, while fast reagent mixing reduces the detection time from hours to minutes. We consider this platform to be a major leap forward in the miniaturization of immunosorbent assays and to provide a rapid and low cost tool for global point-of-care.
Figure
We have developed a sensitive, specific, rapid and low cost pico-liter microsphere based platform for detection and quantification of human anti-tetanus immunoglobulin G. In this method, a biological sample, biosensing microspheres, and fluorescently labeled detection antibodies are co-encapsulated to capture the analyte on the surface of the microsphere in microfluidic pL-sized droplets. Using our platform and commercially available antibodies, we quantified the anti-tetanus antibodies content in human serum.  相似文献   

7.
Cardiovascular diseases (CVDs) are one of the foremost causes of mortality in intensive care units worldwide. The development of a rapid method to quantify cardiac troponin I (cTnI)—the gold-standard biomarker of myocardial infarction (MI) (or “heart attack”)—becomes crucial in the early diagnosis and treatment of myocardial infarction (MI). This study investigates the development of an efficient fluorescent “sandwich” immunoassay using liposome-based fluorescent signal amplification and thereby enables the sensing and quantification of serum-cTnI at a concentration relevant to clinical settings. The calcein-loaded liposomes were utilized as fluorescent nano vehicles, and these have exhibited appropriate stability and efficient fluorescent properties. The standardized assay was sensitive and selective towards cTnI in both physiological buffer solutions and spiked human serum samples. The novel assay presented noble analytical results with sound dynamic linearity over a wide concentration range of 0 to 320 ng/mL and a detection limit of 6.5 ng/mL for cTnI in the spiked human serum.  相似文献   

8.
This review accounts for the current development in microfluidic immunosensing chips. The basic knowledge of immunoassay in relation to its microfluidic material substrate, fluid handling and detection mode are briefly discussed. Here, we mainly focused on the surface modification, antibody immobilization, detection, signal enhancement and multiple analyte sensing. Some of the clinically important currently implemented on the microfluidic immunoassay chips are C-reactive protein (CRP), prostate specific antigen (PSA), ferritin, vascular endothelial growth factor (VEGF), myoglobin (Myo), cardiac troponin T (cTnT), cardiac troponin I (cTnI), and creatine kinase-cardiac muscle isoform (CK-MB). The emerging microfludic immunosensor technology may be a promising prospect that can propel the improvement of clinical and medical diagnosis.  相似文献   

9.
We describe a fluorogenic two-site noncompetitive heterogeneous immunoassay with magnetic beads on a low-voltage digital microfluidic platform using closed electrowetting-on-dielectric (EWOD). All the steps of an enzyme-linked immunosorbent assay (ELISA) were performed on the device using 9H-(1, 3-dichloro-9, 9-dimethylacridin-2-one-7-yl) phosphate as the fluorogenic substrate for the enzyme alkaline phosphatase. The performance of the system was demonstrated with cardiac marker Troponin I (cTnI) as a model analyte in phosphate-buffered saline samples. cTnI was detected within the diagnostically relevant range with a limit of detection of 2.0 ng/mL (CV?=?6.47 %). Washing of magnetic beads was achieved by movement through a narrow region of buffer bridging one drop to another with minimal fluid transfer. More than 90 % of the unbound reagents were removed after five washes. Further experiments testing human blood serum on the same platform demonstrated a sample-to-answer time at ~18.5 min detecting 6.79 ng/mL cTnI.  相似文献   

10.
Cardiac troponin I (cTnI) is an important regulatory protein in cardiac muscle, and its modification represents a key mechanism in the regulation of cardiac muscle contraction and relaxation. cTnI is often referred to as the “gold-standard” serum biomarker for diagnosing patients with acute cardiac injury since it is unique to the heart and released into the circulation following necrotic death of cardiac tissue. The swine (Sus scrofa) heart model is extremely valuable for cardiovascular research since the heart anatomy and coronary artery distribution of swine are almost identical to those of humans. Herein, we report a comprehensive characterization of the modifications in swine cTnI using top-down high-resolution tandem mass spectrometry in conjugation with immunoaffinity chromatography purification. High-resolution high accuracy mass spectrometry revealed that swine cTnI affinity purified from domestic pig hearts was N-terminally acetylated and phosphorylated. Electron capture disassociation is uniquely suited for localization of labile phosphorylations, which unambiguously identified Ser22/Ser23 as the only basally phosphorylated sites that are well-known to be regulated by protein kinase A and protein kinase C. Moreover, a combination of tandem mass spectrometry with sequence homology alignment effectively localized a single amino acid polymorphism, V116A, representing a novel genetic variant of swine cTnI. Overall, our studies demonstrated the unique power of top-down high-resolution tandem mass spectrometry in the characterization of protein modifications, including labile phosphorylation and unexpected sequence variants.  相似文献   

11.
Guo H  He N  Ge S  Yang D  Zhang J 《Talanta》2005,68(1):61-66
An anodic stripping voltammetric method for the determination of cardiac troponin I (cTnI) at a MCM-41 mesoporous material modified carbon paste electrode (MCM-MCPE) was investigated. The test was based on the dual monoclonal antibody “sandwich” principle using colloidal gold as a labeled substrate. Four main steps were carried out to obtain the analytical signal, i.e. electrode preparation, immunoreaction, silver enhancement, and anodic stripping voltammetric detection. The anodic stripping peak current increased linearly with the concentration of cTnI over the range of 0.8-5.0 ng/ml. A detection limit of 0.5 ng/ml was obtained. The established method was applied to detect cTnI in acute myocardial infarction (AMI) samples using routine enzyme-linked immunoadsorbent assay (ELISA) for comparison analysis, and good results were obtained.  相似文献   

12.
IntroductionIn fast and slow skeletal and cardiac muscles,troponin I,the inhibitory protein of the troponin-tropomyosin complex,exists in three isotype formsencoded by three separated genes.The amino acidsequences of the two skeletal and one cardiac Tn Iforms( s Tn I and c Tn I,respectively) exhibit40 %dissimilarity[1] .Moreover,human cardiac Tn I has31 additional residues on the N - terminal end,which do not exist in skeletal forms,thus it pro-vides a high potential for obtaining cardiac-…  相似文献   

13.
A novel molecularly imprinted polymer (MIP) sensor for rapid determination of cardiac troponin (cTnI) was established. Since it can bind to the template molecule cTnI specifically, it can be used to detect concentration of cTnI in serum without much sample pretreatment. What's more, the electrochemical signals depend on the concentration of template molecules. The synthetic sensor possesses advantages including simplicity, high specificity, low cost of preparation, good chemical and mechanical properties, sensitive and label‐free determination. The synthetic sensor shows good dynamic linearity at concentration range from 0.05 to 5.00 nM. The limit of detection (LOD) was found to be 0.027 nM. The detection time of whole process was within 5 minutes.  相似文献   

14.
Proposed methods for detecting circulatory system disease include targeting ultrasound contrast agents to inflammatory markers on vascular endothelial cells. For antibody-based therapies, soluble forms of the targeted adhesion proteins of the immunoglobulin superfamily (IgSF) reduce adhesion yet were left unaccounted in prior reports. Microspheres labeled simply with a maximum level of antibodies can reduce the diagnostic sensitivity by adhering to proteins expressed normally at a low level, while sparsely coated particles may be rendered ineffective by circulating soluble forms of the targeted proteins. A new microdevice technique is applied to simultaneously measure the adhesion profile to a series of IgSF-protein-coated surfaces. In this investigation, we quantify the in vitro binding characteristics of 5-μm microspheres to oriented intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) protein-coated surfaces in the presence of human serum at physiological concentrations. Defined regions of a slide were coated with recombinant chimeric Fc-human ICAM-1 and VCAM-1 in variable ratios but constant total concentration. Monoclonal human anti-ICAM-1 or anti-VCAM-1 antibodies in competition with non-binding mouse anti-rabbit antibodies coat the microsphere surface at a constant surface density with variable yet controlled surface activities. Using multiple slide surface IgSF protein and microsphere antibody concentrations, an adhesion profile was developed for the microspheres with and without IgSF proteins from human serum, which demonstrated that exposure to serum reduced microsphere binding, on average, more than 50% compared to the no-serum condition.. The serum effects were limited to antibodies on the microsphere, since binding inhibition was reversed after rinsing serum from the system and fresh antibody-coated microspheres were introduced. This analysis quantifies the binding effects of soluble IgSF proteins from human serum on antibody-based targeted ultrasound detection and drug delivery methods.  相似文献   

15.
Ma B  Zhou X  Wang G  Huang H  Dai Z  Qin J  Lin B 《Electrophoresis》2006,27(24):4904-4909
A quartz microchip integrated isotachophoretic (ITP) preconcentration with zone electrophoresis (ZE) separation was fabricated using a novel multi-point pressure method featured in normal temperature and lower pressure during bonding process. ITP followed by subsequential ZE of two flavonoids, quercetin and isorhamnetin on the microchip was performed consecutively on the homemade microfluidic workstation with UV detection, resulting in a decreased detectable concentration of 32-fold, compared to the ZE mode only, and their detection limits decreased down to 0.2 microg/mL and 1.2 microg/mL, respectively.  相似文献   

16.
Chemiluminescence immunoassay(CLⅠA) has always been a great challenge in detecting cardiac troponin Ⅰ(c Tn Ⅰ) in whole blood samples without centrifugation because of the interference of red blood cells and low sensitivity. Ⅰn this study, the antigens and erythrocytes in the blood were captured by the antibodies immobilized on the magnetic particles, recognized by another biotinconjugated c Tn Ⅰ antibody and detected by streptavidin/acridine aster-conjugated polychloromethylstyrene microspheres(...  相似文献   

17.
Alterations in glycosylation have been observed in many human diseases and specific changes in glycosylation have been proposed as relevant diagnostic information. Capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF) is a robust method to quantify desialylated N-glycans that are labeled with 8-aminopyrene-1,3,6-trisulfonic acid prior to analysis. To date, only a maximum of 12 glycan structures, the most abundant ones, have been identified by CE-LIF to characterize glycome modulations of total serum in the course of the diseases. In most forms of cancer, findings using CE-LIF were limited to the increase of triantennary structures carrying a Lewisx epitope. In this work, we identified 32 linkage and positional glycan isomers in healthy human serum using exoglycosidase digestions as well as standard glycoproteins, for which we report the assignment of novel structures. It was possible to identify and quantify 34 glycan isomers in the serum of primary epithelial ovarian cancer patients (EOC). Reduced levels of diantennary structures and of high-mannose 5 were statistically significant in the EOC samples, and also, elevated branching as well as increased antennary fucosylation were observed. For the first time, we could demonstrate that not only antennary fucosylation was of relevance in tetraantennary structures but also core-fucosylated tetraantennary N-glycans were statistically increased in EOC patients. The results of the current study provide an improved dataset to be used in glycan biomarker discovery. Graphical abstract
?  相似文献   

18.
Various sorbents recommended for solid phase extraction (SPE) in sample preparation procedures were studied for use in combination with capillary isotachophoresis (ITP). They were very efficient in achieving trace concentration levels (low ppb, i.e., low parts per 109) for different types of ITP analytes present in environmental and biological matrices. A macroporous carbon sorbent was convenient for sample preparation in ITP analysis of short chain fatty acids (C4–C9) in drinking water. Chelating sorbents based on hydroxyalkyl methacrylate matrix with salicylate, thioglycolate and 8-hydroxyquinolinate functionalities were found to be very suitable for preconcentration of heavy metals with an inherent sample clean-up. An octadecyl-bonded silica sorbent enabled in ITP a photometric detection of -aminobutyrate (labeled with a 2,4,6-trinitrophenyl group) at concentrations considerably lower than required for the determination of this amino acid in cerebrospinal fluid (5·10–8 mol/l).  相似文献   

19.
The early diagnosis of acute myocardial infarction requires the determination of several markers in serum shortly after its incidence. The markers most widely employed are the isoenzyme MB of creatine kinase (CK-MB) and the cardiac troponin I (cTnI). In the present work, a capillary waveguide fluoroimmunosensor for fast and highly sensitive simultaneous determination of these markers in serum samples is demonstrated. The dual-analyte immunosensor was realized using glass capillaries internally modified with an ultrathin poly(dimethylsiloxane) film by creating discrete bands of analyte-specific antibodies. The capillary was then filled with a mixture of sample and biotinylated detection antibodies followed by reaction with streptavidin–horseradish peroxidase and incubation with a fluorescently labeled tyramide derivative to accumulate fluorescent labels onto immunoreaction bands. Upon scanning the capillary with a laser beam, part of the emitted fluorescence is trapped and waveguided through the capillary wall to a photomultiplier placed on one of its ends. The employment of tyramide signal amplification provided detection limits of 0.2 and 0.5 ng/mL for cTnI and CK-MB, respectively, in a total assay time of 30 min compared to 0.8 and 0.6 ng/mL obtained for the corresponding assays when the conventional fluorescent label R-phycoerythrin was used in a 65-min assay. In addition, the proposed immunosensor provided accurate and repeatable measurements (intra-assay and interassay coefficients of variation lower than 10%), and the values determined in serum samples were in good agreement with those obtained with commercially available enzyme immunoassays. Thus, the proposed capillary waveguide fluoroimmunosensor has all the required characteristics for fast and reliable diagnosis of acute myocardial infarction.   相似文献   

20.

We compare three different methods to quantify the monosaccharide fucose in solutions using the displacement of a large glycoprotein, lactoferrin. Two microfluidic analysis methods, namely fluorescence detection of (labeled) lactoferrin as it is displaced by unlabeled fucose and the displacement of (unlabeled) lactoferrin in SPR, provide fast responses and continuous data during the experiment, theoretically providing significant information regarding the interaction kinetics between the saccharide groups and binding sites. For comparison, we also performed a static displacement ELISA. The stationary binding site in all cases was immobilized S2-AAL, a monovalent polypeptide based on Aleuria aurantia lectin. Although all three assays showed a similar dynamic range, the microfluidic assays with fluorescent or SPR detection show an advantage in short analysis times. Furthermore, the microfluidic displacement assays provide a possibility to develop a one-step analytical platform.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号