首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
可穿戴设备的兴起使得对柔性器件的需求日益提高,柔性导电材料作为可穿戴器件的重要组成部分而成为研究的热点。传统的电极材料主要是金属,因金属材料本身不具有柔性,一般通过降低金属层厚度以及设计波纹结构等策略实现其在柔性器件中的应用,其加工程序复杂,成本较高。以碳纳米管和石墨烯为代表的纳米碳材料兼具良好的柔性和优异的导电性,且具有化学稳定、热稳定、光学透明性等优点,在柔性导电材料领域展现了极大的应用潜力。本文简要综述了近年来纳米碳材料在柔性导电材料领域的研究进展,首先介绍了碳纳米管基柔性导电材料,分别包括基于碳纳米管水平阵列、碳纳米管垂直阵列、碳纳米管薄膜、碳纳米管纤维的柔性导电材料;继而介绍了石墨烯基柔性导电材料,包括基于剥离法制备的石墨烯和化学气相沉积法制备的石墨烯以及石墨烯纤维基柔性导电材料;并简述了碳纳米管/石墨烯复合柔性导电材料;最后论述了纳米碳材料基柔性导电材料所面临的挑战并展望了其未来发展方向。  相似文献   

2.
The functions and structures of Mo/Ni/MgO catalysts in the synthesis of carbon nanotubes (CNTs) have been investigated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Thin 2-5-walled CNTs with high purities (over 90%) have been successfully synthesized by catalytic decomposition of CH(4) over Mo/Ni/MgO catalysts at 1073 K. It has been found that the yield of CNTs as well as the outer diameter or thickness correlates well with the contents of these three elements. The three components Mo, Ni, and MgO are all necessary to synthesize the thin CNTs at high yields since no catalytic activity was observed for CNT synthesis when one of these components was not present. The outer diameter of the CNTs increases from 4 to 13 nm and the thickness of graphene layers also increases with increasing Mo content at a fixed Ni content, while the inner diameter stays at 2-3 nm regardless of their contents. Furthermore, the average outer diameter is in good agreement with the average particle size of metal catalyst. That is, the thickness or the outer diameter can be controlled by selecting the composition of the Mo/Ni/MgO catalysts. XRD analyses have shown that Mo and Ni form a Mo-Ni alloy before CNT synthesis, while the Mo-Ni alloy phase is separated into Mo carbide and Ni. These alloy particles are supported on MgO cubic particles 15-20 nm in width. It has been found that only small Mo-Ni alloy particles 2-16 nm in size catalyze CNT synthesis, with larger particles over 15 nm exhibiting no activity. Mo carbide and Ni should play different roles in the synthesis of the thin CNTs, in which Ni is responsible for the dissociation of CH(4) into carbon and Mo(2)C works as a carbon reservoir.  相似文献   

3.
Ozonized nanocarbon materials with different dimensionalities, structures, and components exhibited significantly different chemiluminescence (CL) activities. The ozonation time and the weight ratio of hydroxyl carbon nanotubes (d≈8 nm, hyCNTs‐8) and graphene oxide (GO) strongly affected the CL activity of ozonized hybrids. Among GO, hyCNTs‐8, and GO/hyCNTs‐8, the GO/hyCNTs‐8 hybrids exhibited the strongest CL‐enhancing properties toward the luminol/H2O2 system, in contrast to previous reports. This study provides new understanding of the CL activity and CL‐enhancing properties of nanocarbon materials in signal‐enhanced analytical and biomedical fields.  相似文献   

4.
Graphene and carbon nanotubes/fibers (CNT/CNF) hybrid structures are emerging as frontier materials for high-efficiency electronics, energy storage, thermoelectric, and sensing applications owing to the utilization of extraordinary electrical and physical properties of both nanocarbon materials. Recent advances show a successful improvement in the structure and surface area of layered graphene by incorporating another dimension and structural form—three-dimensional graphene (3DG). In this study, vertically aligned CNFs were grown using plasma enhanced chemical vapor deposition on a relatively new form of compressed 3DG. The latter was synthesized using a conventional thermal chemical vapor deposition. The resulting free-standing hybrid material is in-situ N doped during synthesis by ammonia plasma and is produced in the form of a hybrid paper. Characterization of this material was done using electrochemical and spectroscopic measurements. The N doped hybrid showed relatively higher surface area and improved areal current density in electrochemical measurements than compressed pristine 3DG, which makes it a potential candidate for use as an electrode material for supercapacitors, sensors, and electrochemical batteries.  相似文献   

5.
助剂铬对Ni/MgO催化剂CVD法制备碳纳米管的促进作用   总被引:2,自引:0,他引:2  
采用溶胶-凝胶法制备了助剂Cr改性的Ni/MgO催化剂, 用化学气相沉积(CVD)法在600 ℃下裂解甲烷生长碳纳米管, 研究了助剂Cr的引入对催化剂微结构和制备碳纳米管性能的影响. 催化剂样品用XRD, TPR和CO-TPD进行了分析, 制备的碳纳米管用TEM和XRD进行了表征. 实验结果表明, NiO和MgO之间存在着强相互作用而形成固溶体, Ni/MgO催化剂经氢气处理后其中的镍氧化物只有极少部分被还原成为镍. 助剂铬的引入明显促进了镍的还原, 使得催化剂表面的Ni活性中心数增多, 从而使催化剂的活性和性能得到了明显的改进. 在加入助剂后碳纳米管的产率明显增加, 当Cr质量分数为8%时, 碳纳米管的产量为未加助剂时产量的5倍, 碳纳米管和催化剂的质量比达到1928. 当Cr含量进一步增加时, Ni在催剂表面聚集形成大颗粒, 制备出的产品中含有大量的碳纳米纤维和无定形碳. 以8%Cr-Ni/MgO催化剂合成的碳纳米管具有比较高的产率且质量较好.  相似文献   

6.
A one‐pot/one‐step synthesis strategy was developed for the preparation of a nitrogen‐doped carbon nanoarchitecture with graphene‐nanosheet growth on the inner surface of carbon nanotubes (CNTs). The N‐graphene/CNT hybrids exhibit outstanding electrocatalytic activity for several important electrochemical reactions as a result of their unique morphology and defect structures, such as high but uniform nitrogen doping, graphene insertion into CNTs, considerable surface area, and the presence of iron nanoparticles. The high‐yield synthetic process features high efficiency, low‐cost, straightforward operation, and simple equipment.  相似文献   

7.
A one‐pot/one‐step synthesis strategy was developed for the preparation of a nitrogen‐doped carbon nanoarchitecture with graphene‐nanosheet growth on the inner surface of carbon nanotubes (CNTs). The N‐graphene/CNT hybrids exhibit outstanding electrocatalytic activity for several important electrochemical reactions as a result of their unique morphology and defect structures, such as high but uniform nitrogen doping, graphene insertion into CNTs, considerable surface area, and the presence of iron nanoparticles. The high‐yield synthetic process features high efficiency, low‐cost, straightforward operation, and simple equipment.  相似文献   

8.
Hybrid SnO2/nanocarbon families (graphene nanosheets (GNSs), single-wall carbon nanotubes (SWCNTs), multi-wall carbon nanotubes (MWCNTs) and carbon nanospheres (CNSs)) have been synthesized by a similar wet chemical method. SnO2 nanoparticles are uniformly loaded on the surface of the nanocarbon families. As lithium battery anodes, their electrochemical properties of the reaction of lithium are investigated under the same conditions. To compare between them, SnO2/GNSs have the largest capacity; SnO2/GNSs and SnO2/SWCNTs have high cyclability; and SnO2/MWCNTs can maintain the capacity at high current density. Such behaviors are ascribed to their surface-to-volume ratio, structure flexibility, ion mobility and electron conductivity. The present results are the bases for their practical applications in lithium-ion battery anodes.  相似文献   

9.
Supramolecular structures of organic molecules on planar nanocarbon surfaces, such as highly oriented pyrolytic graphite (HOPG), have been extensively studied and the factors that control them are generally well-established. In contrast, the properties of supramolecular structures on curved nanocarbon surfaces like carbon nanotubes remain challenging to predict and/or to understand. This paper reports an investigation into the first study of the supramolecular structures of 5,15-bisdodecylporphyrin (C12P) on chiral, concentrated single-walled carbon nanotubes (SWNTs; with right-handed helix P- and left-handed helix M-) surfaces using STM. Furthermore, the study is the first of its kind to experimentally assign the absolute-handedness chirality of SWNTs, as well as to understand their effect on the supramolecular structures of organic molecules on their surfaces. Interestingly, these SWNT enantiomers resulted in supramolecular structures of opposite chirality based on the handedness chirality. With molecular modelling, we predicted the absolute-handedness chirality of SWNTs, before demonstrating this experimentally.  相似文献   

10.
Chen XM  Wu GH  Jiang YQ  Wang YR  Chen X 《The Analyst》2011,136(22):4631-4640
Similar to its popular older cousins of fullerene and carbon nanotubes (CNTs), the latest form of nanocarbon, graphene, is inspiring intensive research efforts in its own right. As an atomically thin layer of sp(2)-hybridized carbon, graphene possesses spectacular electronic, optical, magnetic, thermal and mechanical properties, which make it an exciting material in a variety of important applications. In this review, we present the current advances in the field of graphene electroanalytical chemistry, including the modern methods of graphene production, and graphene functionalization. Electrochemical (bio) sensing developments using graphene and graphene-based materials are summarized in more detail, and we also speculate on their future and discuss potential progress for their applications in electroanalytical chemistry.  相似文献   

11.
Helical carbon nanotubes currently cost ~15,000–19,000 USD/kg commercially and are ~10–15 times the price of straight carbon nanotubes of similar dimensions. They have not previously been made from the greenhouse gas CO2 nor had new variants of the helical morphology been demonstrated. In this study, a novel, inexpensive electrosynthesis of these helical nanocarbon materials from CO2 is presented. This material may be produced by molten carbon growth conditions that (1) maximize torsional stresses, such as those that may occur during rapid, nucleated carbon reduction, (2) enhance defects that cause formation of heptagonal, rather than the conventional hexagonal building blocks of graphene cylindrical walls, and (3) uniformly control those enhanced defects to repeatedly induce a uniform spiral conformation. These conditions are achieved with at least two of the following experimental conditions: (i) high electrolysis current density, (ii) sp3 defect-inducing agents, such as added oxide, and (iii) controlled concentration of iron added to the electrolyte or cathode. Here, it is shown with SEM, TEM, EDX, XRF, and Raman spectroscopy that a molten controlled electrolyte carbonate synthesis to induce defect formation, and a high rate of electrolysis (0.6 A/cm2) leads to a high yield of helical nanotubes, helical nanofibers, or helical nanoplatelet carbon morphologies.  相似文献   

12.
In this study,the performances of fixed and fluidized bed reactors in the production of single-walled carbon nanotubes(SWNTs)have been investigated.In both reactors,single-walled carbon nanotubes were grown by catalytic chemical vapor decomposition(CCVD)of methane over Co-Mo/MgO nanocatalyst under two different operating conditions.The synthesized samples were characterized by TEM,TGA and Raman spectroscopy.It is found that the performance of a fluidized bed in the synthesis of carbon nanotubes is much better than that of a fixed bed.The quality of carbon nanotubes obtained from the fluidized bed was significantly higher than that from the fixed bed and the former one with the ID/IG ratio of 0.11 while the latter one with the ID/IG ratio of 0.71.Also,the yield of SWNTs in the fluidized bed was 92 wt%,while it was 78 wt%in the fixed bed.These advantages of fluidized bed reactors for the synthesis of carbon nanotubes can be attributed to more available space for the growth of carbon nanotubes and more uniform temperature and concentration profiles.  相似文献   

13.
The typical nano-carbon materials, 1D fiber-like carbon nanotubes (CNTs) and 2D platelet-like graphene nanosheets (GRNs), that have attracted tremendous attention in the field of polymer nanocomposites due to their unprecedented properties, are used as conducting filler to induce a considerable improvement in the mechanical, thermal and electrical properties of the resulting graphene/polymer nanocomposites at very low loading contents. This study deals with the preparation and electro-stimulus response properties of polyurethane (PU) dielectric elastomer films with such 1D and 2D nanocarbon fillers embedded in the polymer matrix. The various forms of carbon used in composite preparation include CNT, GRN and CNT-GRN hybrid fillers. Results indicate that the dielectric, mechanical and electromechanical properties depend on the carbon filler type and the carbon filler weight fraction. Here, it has been also established that embedding CNT-GRN hybrid fillers into pristine polyurethane endows somewhat better dispersion of CNTs and GRNs as well as better interfacial adhesion between the carbon fillers and matrix, which results in an improvement in electric-induced strain. Therefore, the nanocomposites seem to be very attractive for microelectromechanical systems applications.  相似文献   

14.
The conditions of self-propagating high-temperature synthesis in a powdered sodium carbonate-magnesium mixture optimum for the preparation of the largest amount of carbon nanotubes (CNTs) were studied. The yield of nanotubes and nanofibers was weakly sensitive to the selection of the amount of a catalyst. The yield of nanotubes ceased to increase noticeably at a relative catalyst content higher than 10 wt %. For the first time, the self-propagating high-temperature reaction was performed with an iron-nickel catalyst in a limestone-magnesium mixture, that is, with the cheapest powdered reagent containing carbon. The reaction produced a small number of CNTs and nanofibers; cubic crystals, predominantly of MgO, were also observed.  相似文献   

15.
16.
Nanographenes (NGs), also known as graphene quantum dots, have recently been developed as nanoscale graphene fragments. These nanocarbon species can be excited with UV light and emit light from the UV‐to‐visible region. This photoemission has received great attraction across multiple scientific fields. NGs can be produced by cutting off carbon sources or fusing small organic molecules to grow graphitic structures. Furthermore, the organic synthesis of NGs has been intensely studied. Recently, the number of research papers on postsynthetic modification of NGs has gradually increased. Installed organic groups can tune the properties of NGs and provide new functionalities, opening the door for the development of sophisticated carbon‐based functional materials. This review sheds light on recent progress in the postsynthetic modification of NGs and provides a brief summary of their production methods.  相似文献   

17.
In recent years, nanocarbon materials have attracted the interest of researchers due to their excellent properties. Nanocarbon-based flame retardant polymer composites have enhanced thermal stability and mechanical properties compared with traditional flame retardant composites. In this article, the unique structural features of nanocarbon-based materials and their use in flame retardant polymeric materials are initially introduced. Afterwards, the flame retardant mechanism of nanocarbon materials is described. The main discussions include material components such as graphene, carbon nanotubes, fullerene (in preparing resins), elastomers, plastics, foams, fabrics, and film–matrix materials. Furthermore, the flame retardant properties of carbon nanomaterials and their modified products are summarized. Carbon nanomaterials not only play the role of a flame retardant in composites, but also play an important role in many aspects such as mechanical reinforcement. Finally, the opportunities and challenges for future development of carbon nanomaterials in flame-retardant polymeric materials are briefly discussed.  相似文献   

18.
Summary: Raman spectroscopic data are obtained on various carbon allotropes like diamond, amorphous carbon, graphite, graphene and single wall carbon nanotubes by micro-Raman spectroscopy, tip-enhanced Raman spectroscopy and tip-enhanced Raman spectroscopy imaging, and the potentials of these techniques for advanced analysis of carbon structures are discussed. Depending on the local organisation of carbon the characteristic Raman bands can be found at different wavenumber positions, and e.g. quality or dimensions of structures of the samples quantitatively can be calculated. In particular tip-enhanced Raman spectroscopy allows the investigation of individual single wall carbon nanotubes and graphene sheets and imaging of e.g. local defects with nanometer lateral resolution. Raman spectra of all carbon allotropes are presented and discussed.  相似文献   

19.
The selective and predictable synthesis of structurally uniform carbon nanotubes (CNTs) represents a long‐standing goal in both nanocarbon science and synthetic organic chemistry. This Review focuses on synthetic studies toward the controlled synthesis of CNTs with single chirality through the organic synthesis of CNT segments and the organic template assisted growth of CNTs.  相似文献   

20.
The Ni/CNT catalyst was fabricated by directly dipping carbon nanotube precursors refluxed in 4 M of nitric acid into Ni electroless plating bath, and used to synthesize new carbon nanotubes. The experimental results indicate that the duration of acid-treatment of carbon nanotubes precursors exerts a great influence on the catalysis of Ni/CNT in the synthesis of carbon nanotubes and hence the structures of the new carbon nanotubes. When the carbon nanotubes precursors were refluxed for 0.5 h in 4 M of nitric acid, bamboo-shaped carbon nanotubes (BSCNT) or Y junction carbon nanotubes in the carbon products were obtained. As the duration of acid-treatment of carbon nanotubes precursors increased to 6 h, the as-prepared Ni/CNT displayed higher activity, and the carbon nanotube products were high pure without any Y junction structure or any separation layers in hollow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号