首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Indium(III) chloride and indium(III) trifluoromethanesulfonate were found to be excellent catalysts for the addition of thiolacetic acid to non-activated olefins. The reaction is highly regioselective and can be run in the presence of 1 mol % of catalyst.  相似文献   

2.
We report a new nonenzymatic amperometric detection of ascorbic acid (AA) using a glassy carbon (GC) disk electrode modified with hollow gold/ruthenium (hAu–Ru) nanoshells, which exhibited decent sensing characteristics. The hAu–Ru nanoshells were prepared by the incorporation of Ru on hollow gold (hAu) nanoshells from Co nanoparticle templates, which enabled AA selectivity against glucose without aid of enzyme or membrane. The structure and electrocatalytic activities of the hAu–Ru catalysts were characterized by spectroscopic and electrochemical techniques. The hAu–Ru loaded on GC electrode (hAu–Ru/GC) showed sensitivity of 426 μA mM−1 cm−2 (normalized to the GC disk area) for the linear dynamic range of <5 μM to 2 mM AA at physiological pH. The response time and detection limit were 1.6 s and 2.2 μM, respectively. Furthermore, the hAu–Ru/GC electrode displayed remarkable selectivity for ascorbic acid over all potential biological interferents, including glucose, uric acid (UA), dopamine (DA), 4-acetamidophenol (AP), and nicotinamide adenine dinucleotide (NADH), which could be especially good for biological sensing.  相似文献   

3.
Tang Y  Wu M 《Talanta》2005,65(3):794-798
A method of quickly determining ascorbic acid and sorbic acid by capillary zone electrophoresis with ultraviolet detection was developed. The choice of background electrolyte, wavelength, injection time and applied voltage were discussed. Ascorbic acid and sorbic acid were well separated in 80 mmol L−1 boric acid-5 mmol L−1borax (pH = 8.0) in 5 min at the detecting wavelength of 270 nm. Under the optimum condition, the method has linear ranges of 2.54-352.00 mg L−1 for ascorbic acid and 1.08-336.39 mg L−1 for sorbic acid with the detection limit of 1.70 mg L−1 for ascorbic acid and 0.54 mg L−1 for sorbic acid, respectively. Other organic acids in fruit juices have no effect on the detection. This method is very feasible and simple and can be used to detect ascorbic acid and sorbic acid in fruit juices.  相似文献   

4.
Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1.5 V into 0.1 mol L−1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), ΔEAA-DA = 222 mV; ΔEAA-UA = 360 mV and ΔEDA-UA = 138 mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 × 10−6 mol L−1 for uric acid, 1.3 × 10−5 mol L−1 for ascorbic acid and 1.1 × 10−7 mol L−1 for dopamine, with sensitivities of (7.7 ± 0.5), (0.061 ± 0.001) and (9.5 ± 0.05) A mol−1 cm−2, respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed.  相似文献   

5.
A silver hexacyanoferrate nanoparticles/carbon nanotubes modified glassy carbon electrode was fabricated and then successfully used for the simultaneous determination of ascorbic acid, dopamine and uric acid by cyclic voltammetry. A detailed investigation by transmission electron microscopy (TEM) and electrochemistry was performed in order to elucidate the preparation process and properties of the nanocomposites. The size of silver hexacyanoferrate nanoparticles was examined by TEM around 27 nm. Linear calibration plots were obtained over the range of 4.0 × 10−6-7.8 × 10−5, 2.4 × 10−6-1.3 × 10−4 and 2.0 × 10−6-1.5 × 10−4 mol L−1 with detection limits of 4.2 × 10−7,1.4 × 10−7 and 6.0 × 10−8 mol L−1 for ascorbic acid, dopamine and uric acid, respectively. The practical analytical utilities of the modified electrode were demonstrated by the determination of ascorbic acid, dopamine and uric acid in urine and human blood serum samples.  相似文献   

6.
A new, simple and sensitive spectrofluorimetric method for the determination of salicylic acid (λex = 315 nm, λem = 408 nm) using As(III) as a sensitizing reagent has been investigated by measuring the increase of fluorescence intensity of salicylic acid due to the complexation of As(III)-salicylic acid in presence of sodium dodecyl sulfate (SDS) 10−3 M. Under optimum conditions, a significant relationship was obtained between the fluorescence intensity and salicylic acid concentration. A linear calibration curve was obtained in the range 13.8-13812 μg l−1 with product-moment correlation coefficient (R) 0.99985 and detection limit 4.2 μg l−1. The R.S.D. is 2.35% (n = 5).The method was applied successfully to the determination of salicylic acid in human serum.  相似文献   

7.
A new heterodinuclear Fe(III)Zn(II) complex which mimics the active site of the hydrolytic enzyme red kidney bean purple acid phosphatase was synthesized and characterized by IR, CHN and X-ray crystallographic analyses. This complex, [FeIIIZnII(μ-OH)bpbpmp-CH3](ClO4)2, containing the ligand (H2bpbpmp-CH3 = {2-[bis(2-pyridylmethyl)aminomethyl]-6-[(2-hydroxy-5-methylbenzyl) (2-pyridyl-methyl) aminomethyl]-4-methyl-phenol}) was employed in the construction of a biomimetic sensor and used in the determination of rosmarinic acid in plant extract samples. The response parameters and optimization of the biomimetic sensor design were evaluated. The best performance of this sensor was obtained for 75:15:10% (w/w/w) of the graphite powder:nujol:Fe(III)Zn(II) complex, 0.1 mol L−1 phosphate buffer solution (pH 7.5), 1.19 × 10−4 mol L−1 hydrogen peroxide with frequency, pulse amplitude, and scan increment at 30 Hz, 100 mV, and 0.6 mV, respectively. The rosmarinic acid concentration was linear in the range of 2.98 × 10−5 to 3.83 × 10−4 mol L−1 (r = 0.9991) with a detection limit of 2.30 × 10−6 mol L−1. This biomimetic sensor demonstrated long-term stability (300 days; 900 determinations) and reproducibility, with a relative standard deviation of 12.0%. The recovery study of rosmarinic acid in plant extract samples gave values from 90.3 to 98.3% and the concentrations determined showed agreement when compared with those obtained using capillary electrophoresis at the 95% confidence level.  相似文献   

8.
E.K. Janghel  V.K. Gupta  J.K. Rai 《Talanta》2007,72(3):1013-1016
A new simple and sensitive analytical spectrophotometric method is developed for the determination of ascorbic acid reduces methyl viologen to form a stable blue coloured free radical ion. This method has a sensitivity and lower limit detection of 0.1 μg ml−1 of ascorbic acid (0.1 ppm) which is comparable to the flow injection analysis reported earlier. Beer's law is obeyed over the concentration range of 1.0-10 μg ml−1 of ascorbic acid per 10 ml of the final solution (0.1-1.0 μg ml−1) at 600 nm. The molar absorptivity and Sandell's sensitivity were found to be 1.5 × 105 ± 100 l mol−1 cm−1 and 0.001 μg cm−2, respectively. The method has been applied to the determination of ascorbic acid in food, pharmaceuticals and biological samples.  相似文献   

9.
The pyrolysis of fir wood impregnated with boric acid (0-5.4%) has been investigated for heating temperatures of 650 and 800 K by examining the yields of char, water, permanent gases (CO2, CO, CH4) and total organic products (together with 32 compounds). The yields of the last product class continuously decrease to the advantage of char and water, but the most significant modifications occur for acid contents below 2%. The formation of levoglucosan (with 2-acetylfuran, 5-methyl-2-furaldehyde and other minor species) first and levoglucosenone (with 2-furaldehyde) afterwards is favoured, whereas other compounds generated from the holocellulosic (hydroxyacetaldehyde, hydroxypropanone, acetic acid and minor carbohydrates) and lignin (phenols, cresols) fractions generally decline. Conversion times become longer and volatilization rates are reduced. The oxidation characteristics of char have been studied by means of thermogravimetric analysis and interpreted according to a three-step reaction mechanism. The boric acid treatment lowers the activation energy and reaction order of the most important step (145 versus 226 kJ/mol and 1.2 versus 0.86, respectively) which also shows lower rates and is slightly delayed.  相似文献   

10.
Chen Y  Chen J  Ma K  Cao S  Chen X 《Analytica chimica acta》2007,605(2):185-191
A sensitive fluorimetric method for determination of phytic acid in human urine samples was described. The method was based on a fluorimetric replacement reaction, in which the added phytic acid replaced the Cu2+ ion from Cu2+-gelatin complex, liberating the fluorescent gelatin molecule. The fluorescence of the solution was accordingly recovered proportionally to the amount of the foreign phytic acid. The excitation wavelength was 273.5 nm and the characteristic emission wavelength was 305.0 nm, respectively. The calibration graph was obtained by plotting the recovered fluorescent intensity at maximum 305.0 nm against the added standard phytic acid, and was divided into two sections. One section was linear over the range of 0.40-2.40 mg L−1 with a linear regression equation of If = −0.895 + 15.146c (R2 > 0.9993), and the other over the range of 2.40-9.20 mg L−1 with a linear regression equation of If = −29.526 + 26.113c (R2 > 0.9996), respectively. The relative standard deviation (R.S.D.) at 95% confidence degree for a 2.0 mg L−1 of standard phytic acid within 1 month was less than 1.26% (n = 5), indicating the procedure is reproducible. The detection and the quantification limits of phytic acid were estimated to be 0.23 and 0.40 mg L−1, respectively. The proposed method was applied to the determination of phytic acid in urine samples and the found concentrations of phytic acid in urine were in the range of 0.49-0.75 mg L−1 with recoveries of 96.2-108.8%. Comparison of the obtained results with the reported HPLC was performed, indicating the proposed method was reliable.  相似文献   

11.
A capillary electrophoresis (CE) and a high performance liquid chromatography (HPLC) method are described for the simultaneous determination of ethylenediaminetetraacetic acid (EDTA), S,S′-ethylenediaminedisuccinic acid (EDDS) and R,S-iminodisuccinic acid (IDS) complexing agents as their Fe(III) complexes in cosmetics like shower cream and foam bath. The non-biodegradable EDTA is used in combination with biodegradable analogues like EDDS and IDS in many commercial products. The HPLC method involves separation by reversed-phase ion pair chromatography on a C18 column using methanol-formate buffer (20 mM tetrabutylammonium hydrogen sulfate, 15 mM sodium formate adjusted to pH 4.0 with formic acid) (10:90, v/v) as mobile solvent at a flow rate of 0.8 mL min−1 at 24 °C using UV detection at 240 nm. The CE separation was performed in a fused silica capillary of 50 μm i.d. with the total length of 50 cm with a 10 mM MES and MOPSO (pH 5.5) at an applied voltage of −25 kV. The samples were introduced by applying a 50 mbar pressure for 2 s. Absorbances at 215 and 225 nm were monitored for the detection of the complexes. The methodology performance of the two methods was evaluated in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and reproducibility. The LOD values obtained from HPLC are low when compared with CE. The applicability of both the methods was demonstrated for the analysis of cosmetic products such as shower cream and foam bath. The results obtained by both CE and HPLC were found to be comparable and in good agreement.  相似文献   

12.
In this research, the stability of benzoic acid and three of its derivatives (anthranilic acid, salicylic acid, and syringic acid) under subcritical water conditions was investigated. The stability studies were carried out at temperatures ranging from 50 to 350 °C with heating times of 10–630 min. The degradation of the benzoic acid derivatives increased with rising temperature and the acids became less stable with longer heating time. The three benzoic acid derivatives showed very mild degradation at 150 °C. Severe degradation of benzoic acid derivatives was observed at 200 °C while their complete degradation occurred at 250 °C. However, benzoic acid remained stable at temperatures up to 300 °C. The degradation products of benzoic acid and the three derivatives were identified and quantified by HPLC and confirmed by GC/MS. Anthranilic acid, salicylic acid, syringic acid, and benzoic acid in high-temperature water underwent decarboxylation to form aniline, phenol, syringol, and benzene, respectively.  相似文献   

13.
A naphthyridine-based charge neutral receptor has been designed and synthesized. Its complexation with a series of carboxylic acids involved in the Krebs cycle has been studied by 1H NMR, UV-vis and fluorescence methods. The receptor shows strong binding to citric acid (Ka = 1.60 × 105 M−1) and is also able to distinguish diastereomeric maleic acid from fumaric acid by fluorescence.  相似文献   

14.
An ascorbic acid sensor was fabricated via the drop-casting of dodecylbenzene sulphonic acid (DBSA)-doped polyaniline nanoparticles onto a screen-printed carbon-paste electrode. The modified electrode was characterised with respect to the numbers of drop cast layers, optimum potential and operating pH. The sensor was found to be optimal at neutral pH and at 0 V vs. Ag/AgCl. Under these conditions, the sensor showed good selectivity and sensitivity in that it did not respond to a range of common interferents such as dopamine, acetaminophen, uric acid and citric acid, but was capable of the detection of ascorbic acid at a sensitivity of 0.76 μA mM−1 or 10.75 μA mM−1 cm−2 across a range from 0.5 to 8 mM (r2 = 0.996, n = 6), and a limit of detection of 8.3 μM (S/N = 3). The sensor was compared to a range of other conducting polymer-based ascorbate sensors and found to be comparable or superior in terms of analytical performance.  相似文献   

15.
Poly(3,4-ethylenedioxythiophene-co-(5-amino-2-naphthalenesulfonic acid)) (PEDOT-PANS) film modified glassy carbon electrode was prepared by electrochemical polymerization technique. The properties of modified electrode was studied. It was found that the electrochemical properties of modified electrode was very much dependent on the experimental conditions, such as monomer oxidation potential and pH. The modified electrode surface was characterized by scanning electron microscopy (SEM). The PEDOT-PANS film modified electrode shows electrocatalytic activity toward oxidation of dopamine (DA) in acetate buffer solution (pH 5.0) and results in a marked enhancement of the current response. The linear sweep voltammetric (LSV) peak heights are linear with DA concentration from 2 × 10−6 to 1 × 10−5 M. The detection limit is 5 × 10−7 M. More over, the interferences of ascorbic acid (AA) and uric acid (UA) were effectively diminished. This work provides a simple and easy approach for selective determination of dopamine in the presence of ascorbic acid and uric acid.  相似文献   

16.
Catalytic Friedel-Crafts acylation of benzene and unactivated benzenes, such as chlorobenzene and fluorobenzene, was successfully accomplished using rare earth(III) perfluorooctane sulfonates (RE(OPf)3), RE = Sc, Y, La ∼ Lu) and perfluorooctanesulfonic acid (PfOH) as catalysts in fluorous solvents. Solutions of Yb(OPf)3 and PfOH in perfluorodecalin (C10F18, cis and trans-mixture) are the most suitable catalytic system, with catalyst loading as low as 0.4%mol leading to clean, high-yielding benzoylation of a variety of unactivated benzenes. By simple separation of the fluorous phase containing only catalyst, acylation can be repeated several times.  相似文献   

17.
This work is to explore a new route to synthesize functional polyesters bearing pendant hydroxyl groups. The approach is via biocatalyzed direct polycondensation. l-Malic acid, adipic acid and 1,8-octanediol were used as comonomers and lipase Novozym 435 as a biocatalyst. 1H NMR studies on the structure of the products indicated that Novozym 435 was strictly selective for esterification of l-malic acid carboxyl groups while leaving the hydroxyl groups unchanged. The influences of the monomer feeding ratio, reaction temperature, and reaction time on the molecular weight of the products were investigated. By varying l-malic acid feed ratio in the total monomers from 0 to 20 mol%, the molecular weight (MW) of the product changed from 9.5 kilo Dalton (kD) to 4.7 kD while reaction was held at 70 °C for 48 h. The maximum MW could reach 7.4 kD at 80 °C when varying temperature between 70 and 90 °C if l-malic acid is 20 mol% and reaction time is 48 h. At 75 °C the MW increased from 5.2 kD to 6.6 kD when reaction time was elongated from 48 h to 72 h. However, little change in MW was observed at 80 and 85 °C when the reaction time was above 48 h. Thermal property of the copolyesters was studied by differential scanning calorimetry (DSC). Increasing the l-malic acid content in copolyesters resulted in melting temperature depression.  相似文献   

18.
Maki T  Soh N  Nakano K  Imato T 《Talanta》2011,85(4):1730-1733
A simple and sensitive flow injection fluorometric method for the determination of ascorbic acid is described. Perylenebisimide-linked nitroxide (PBILN) is used as a fluorescent reagent, which permits the selective determination of ascorbic acid. The fluorescence of the perylenebisimide moiety in PBILN is quenched by the nitroxide moiety, which is linked to the perylenebisimide. When a stream of a solution of ascorbic acid is merged with a stream of PBILN, the ascorbic acid reacts with the nitroxide moiety of PBILN to form hydroxylamine, and the fluorescence properties of the perylenebisimide moiety are recovered. As a result, a peak-shaped fluorescence signal is produced, which can be observed by a fluorescence detector located downstream. Under optimized conditions, a good linear relationship between the concentration of ascorbic acid and peak height in the concentration range from 0.5 to 10 μmol L−1 was found and the detection limit (S/N = 3) was 0.28 μmol L−1. The relative standard deviation for the determination of 4.0 μmol L−1 ascorbic acid samples was 1.0% (n = 5). The proposed method was applied to the determination of ascorbic acid in several soft drink beverages and the analytical results were in good agreement with those obtained using a conventional method.  相似文献   

19.
A new electrochemical sensor for melamine with 3,4-dihydroxyphenylacetic acid as the recognition element is established. The results of Fourier Transform Infrared (FT-IR) spectra demonstrate that melamine may interact with 3,4-dihydroxyphenylacetic acid to form a complex mainly through the hydrogen-bonding interaction. The electrochemical behavior of 3,4-dihydroxyphenylacetic acid in the presence of melamine was studied. The anodic peak currents of 3,4-dihydroxyphenylacetic acid obtained by differential pulse voltammetry are linear with the logarithm of melamine concentrations in the range from 1.0 × 10−8 to 5.0 × 10−6 M with a linear coefficiency of 0.997. The detection limit is 3.0 × 10−9 M. The proposed method displayed an excellent sensitivity and was successfully applied to the determination of melamine in milk products.  相似文献   

20.
A new sensor for simultaneous determination of peroxyacetic acid and hydrogen peroxide using silver nanoparticles (Ag-NPs) as a chromogenic reagent is introduced. The silver nanoparticles have the catalytic ability for the decomposition of peroxyacetic acid and hydrogen peroxide; then the decomposition of them induces the degradation of silver nanoparticles. Hence, a remarkable change in the localized surface plasmon resonance absorbance strength could be observed. Spectra-kinetic approach and artificial neural network was applied for the simultaneous determination of peroxyacetic acid and hydrogen peroxide. Linear calibration graphs were obtained in the concentration range of (8.20 × 10−5 to 2.00 × 10−3 mol L−1) for peroxyacetic acid and (2.00 × 10−5 to 4.80 × 10−3 mol L−1) for hydrogen peroxide. The analytical performance of this sensor has been evaluated for the detection of simultaneous determination of peroxyacetic acid and hydrogen peroxide in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号