首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The resolution by Lipase PS of rac-5 (from reduction of ketone 6, obtained from dicyclopentadiene with a new environment-friendly synthesis) gives (2S)-5, which was further reduced to the endo(2R)-1a alcohol. The endo(2S)-1b alcohol was obtained from camphor with a multistep synthesis. Pinacol couplings of 3a,b, carried out with Mg/Hg or Corey's general procedure respectively, afforded with high diastereoselectivity the C2 symmetry diols (2R,2′R)-2a and (2S,2′S)-2b, with endo oriented OH functions. The enantiogenic power of the endo alcohol (2R)-1a and (2S)-1b and of the diols (2R,2′R)-2a and (2S,2′S)-2b was tested towards the LiAlH4 reduction of acetophenone. The C2 symmetry appears to play a fundamental role.  相似文献   

2.
The coupling reaction of 1-tributylstannylthianthrene (5) and 2-tributylstannylthianthrene (7) in the presence of copper catalysts at rt afforded the thianthrene dimer 1,1′-bithianthrene (3), 2,2′-bithianthrene (8), and 1,2′-dithianthrene (9) in high yields. Also we obtained thianthrene oxide dimer (R,R) (S,S)-1-(10-S-monoxythianthrene-1-yl)thianthrene-10-S-monoxide (12) and (R,S) (S,R)-1-(10-S-monoxythianthrene-1-yl)thianthrene-10-S-monoxide (13) from 1-tributylstannyl-10-S-monoxythianthrene (10) under the same reaction condition. The final structural conformation of 3, 8, 9, and 12 was performed by X-ray crystallographic analysis. Further, the solvent effects in the coupling reactions were also examined.  相似文献   

3.
The high-pressure asymmetric Diels-Alder reactions of d-galacto- (1a) and d-manno-3,4,5,6,7-penta-O-acetyl-1,2-dideoxy-1-nitrohept-1-enitol (1b) with 2,5-dimethylfuran (2) afforded mixtures of cycloadducts, from which the (2S,3R)-3-exo-nitro (3a and 3b), (2R,3S)-3-exo-nitro (4a and 4b), and (2R,3S)-1′,2′,3′,4′,5′-penta-O-acetyl-1′-C-(1,4-dimethyl-3-endo-nitro-7-oxabicyclo[2.2.1]hept-5-en-2-exo-yl)-d-galacto-pentitol (5b) were isolated pure. Deacetylation of these compounds led to new chiral mono-, bi-, and tricyclic ethers, being their asymmetric centers arising from the chiral inductor used in the cycloaddition reaction. A ring opening mechanism through a 1-nitro-1,3-cyclohexadiene intermediate has been proposed.  相似文献   

4.
(1R,2S,3S,5R,7aR)-1,2-Dihydroxy-3-hydroxymethyl-5-methylpyrrolizidine[(−)-3-epihyacinthacine A5, 1a] and (1S,2R,3R,5S 7aS)-1,2-dihydroxy-3-hydroxymethylpyrrolizidine[(+)-3-epihyacinthacine A5, 1b] have been synthesized either by Wittig's or Horner-Wadsworth-Emmond's (HWE's) methodology using aldehydes 4 and 9, both prepared from (2S,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (2, partially protected DADP), and the appropriate ylides, followed by cyclization through an internal reductive amination process of the resulting α,β-unsaturated ketones 5 and 10, respectively, and total deprotection.  相似文献   

5.
The irradiation of the title compounds [(Z)-1] having (S)-(+)-sec-butyl, (−)-mentyl and related chiral auxiliaries in methanol and 1,2-dichloroethane containing 2-(diethylamino)ethanol afforded chiral auxiliary-substituted (4S,5S)-, (4R,5R)-, (4R,5S)- and (4S,5R)-4,5-dihydrooxazole derivatives (2) along with (E)-1. It was found that the photoinduced electron transfer-initiated cyclization of 1 gives either of the two diastereomers for cis-2 and trans-2 in diastereomeric excess whose value varies from 6% to 81% depending on solvent and chiral auxiliary.  相似文献   

6.
The aza-Darzens (‘ADZ’) reactions of N-diphenylphosphinyl (‘N-Dpp’) imines with chiral enolates derived from oxazolidinones and camphorsultam have been studied. Whilst oxazolidinone enolates reacted poorly in terms of aziridination, the use of the chiral enolate derived from both antipodes of N-bromoacetyl 2,10-camphorsultam, 2R-(5) and 2S-(5), with N-diphenylphosphinyl aryl and tert-butylimines proceeded in generally good yield to give, respectively, (2′R,3′R)- or (2′S,3′S)-cis-N-diphenylphosphinyl aziridinoyl sultams of high de.  相似文献   

7.
Reaction paths of the one-pot reaction of (R)-2-(α-methylbenzyl)amino-1,3-propanediol (1) and 2-chloroethyl chloroformate with DBU giving (4SR)-4-hydroxymethyl-3-(α-methylbenzyl)-2-oxazolidinone [(4S)-2] (94% de) were investigated. Intermediates of this reaction, 2-chloroethyl (2S)- and 2-chloroethyl (2R)-3-hydroxy-2-[(αR)-α-methylbenzyl]aminopropyl carbonates [(2S)-4 and (2R)-4], were synthesized individually. After the addition of DBU to the respective solution of the carbonate (2S)-4 and that of (2R)-4 in dichloromethane, the intramolecular transesterification between (2S)-4 and (2R)-4 and the diastereoselective intramolecular cyclization proceeded to afford (4S)-2 in high diastereomeric excess. Therefore, two monocarbonates (2S)-4 and (2R)-4 were kinetically resolved by this cyclization during the intramolecular transesterification between (2S)-4 and (2R)-4. We found that this process involved dynamic kinetic resolution accompanied by intramolecular transesterification.  相似文献   

8.
The readily available 3-O-benzoyl-4-O-benzyl-1,2-O-isopropylidene-β-d-fructopyranose (6) was straightforwardly transformed into 5-azido-3-O-benzoyl-4-O-benzyl-5-deoxy-1,2-O-isopropylidene-β-d-fructopyranose (8), after treatment under modified Garegg's conditions followed by reaction of the resulting 3-O-benzoyl-4-O-benzyl-5-deoxy-5-iodo-1,2-O-isopropylidene-α-l-sorbopyranose (7) with lithium azide in DMF. O-debenzoylation at C(3) in 8, followed by oxidation and reduction caused the inversion of the configuration to afford the corresponding β-d-psicopyranose derivative 11 that was transformed into the related 3,4-di-O-benzyl derivative 12. Cleavage of the acetonide of 12 to give 13 followed by O-tert-butyldiphenylsilylation afforded a resolvable mixture of 14 and 15. Compound 14 was transformed into (2R,3R,4S,5R)- (17) and (2R,3R,4S,5S)-3,4-dibenzyloxy-2′,5′-di-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (18) either by a tandem Staudinger/intramolecular aza-Wittig process and reduction of the resulting intermediate Δ2-pyrroline (16), or only into 18 by a high stereoselective catalytic hydrogenation. When 15 was subjected to the same protocol, (2S,3S,4R,5R)- (21) and (2R,3S,4R,5R)-3,4-dibenzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (22) were obtained, respectively.  相似文献   

9.
The fragmentation of (S)-exo-5-norbornenyl-2-oxychlorocarbene (3) affords (S)-exo-5-norbornenyl-2-chloride (4), (R)-endo-5-norbornenyl-2-chloride (5), and (S)-3-nortricyclyl chloride (6) with varying degrees of enantiomeric excess. A weighted blend of SNi fragmentation and escape to norbornenyl/nortricyclyl ion pairs rationalizes the stereochemical results.  相似文献   

10.
An enantioselective synthesis of sterically congested 1,2-di-tert-butyl and 1,2-di-(1-adamantyl)ethylenediamines has been developed. Thus, diastereomerically pure trans-1-apocamphanecarbonyl-4,5-dimethoxy-2-imidazolidinones 6 and 7 were successfully prepared by optical resolution of (±)-trans-4,5-dimethoxy-2-imidazolidinone using apocamphanecarbonyl chloride (MAC-Cl) followed by stereospecific and stepwise substitution of the dimethoxyl groups using tert-butyl or 1-adamantyl cuprates to provide (4S,5S)-4,5-di-tert-butyl and (4R,5R)-4,5-di-(1-adamantyl)-2-imidazolidinones 12 and 15, respectively. Furthermore, N-acetyl 4,5-di-tert-butyl and 4,5-di-(1-adamantyl)-2-imidazolidinones 16a,b were enantioselectively deacetylated using a catalytic oxazaborolidine system to provide enantiopure 1-p-tolylsulfonyl-4,5-di-tert-butyl-2-imidazolidinones 12 and 19 and 1-p-tolylsulfonyl-4,5-di-(1-adamantyl)-2-imidazolidinones 18 and 20, respectively. Finally, N-p-tolylsulfonyl-2-imidazolidinones 12 and 15 were treated with 30 equiv of Ba(OH)2·8H2O to achieve ring cleavage and to provide (1S,2S)-1,2-di-tert-butylethylenediamine 3 and (1R,2R)-1,2-di-(1-adamantyl)ethylenediamine 4.  相似文献   

11.
A new series of 13-acetyl-7,12-dihydro-7-ethylbenz[e]naphtho[1,2-b]azepine (4a-d) and 2-aryl-4-hydroxy-2,3,4,5-tetrahydronaphtho[1,2-b]azepine derivatives (6a-d) have been synthesized from N-allyl-N-benzyl substituted α-naphthylamines (1a-d) by utilizing aromatic amino-Claisen rearrangement, intramolecular Friedel-Crafts alkylation and intramolecular dipolar 1,3-cycloaddition nitrone-olefin reactions.  相似文献   

12.
New enantiopure amines (R,R)-1 and (S,S)-1 were obtained from (R)- or (S)-2,2′-diamino-1,1′-binaphthyl and 2,6-diformylpyridine in a synthesis templated by lead(II) or lanthanide(III) ions, reduction with NaBH4 and subsequent demetallation. Similarly new amines (R,R,R,R)-2 and (S,S,S,S)-2 were obtained from (1R, 2R)- or (1S, 2S)-1,2-diphenylethylenediamine. The X-ray crystal structure of the Pb(II) complex with macrocyclic Schiff base precursor of (R,R)-1 indicates helical twisted conformation of this macrocycle, while the ROESY spectrum of R,R-1 suggests less twisted conformation. (R,R)-1 and (R,R,R,R)-2 were tested as chiral shift reagents (chiral solvating agents) for various α-substituted carboxylic acids, including non steroidal anti-inflammatory drugs. Enantiodiscrimination of carboxylate 1H NMR signals was observed with ΔΔδ values up to 0.1 ppm.  相似文献   

13.
The readily available 3-O-benzyl-1,2-O-isopropylidene-β-d-fructopyranose (2) was transformed into its 5-O- (3) and 4-O-benzoyl (4) derivative. Compound 4 was straightforwardly transformed into 5-azido-4-O-benzoyl-3-O-benzyl-5-deoxy-1,2-O-isopropylidene-β-d-fructopyranose (7) via the corresponding 5-deoxy-5-iodo-α-l-sorbopyranose derivative 6. Cleavage of the acetonide in 7 to give 8, followed by regioselective 1-O-silylation to 9 and subsequent catalytic hydrogenation gave a mixture of (2S,3R,4R,5R)- (10) and (2R,3R,4R,5R)-4-benzoyloxy-3-benzyloxy-2′-O-tert-butyldiphenylsilyl-2,5-bis(hydroxymethyl)pyrrolidine (12) that was resolved after chemoselective N-protection as their Cbz derivatives 11 and 1a, respectively. Stereochemistry of 11 and 1a could be determined after total deprotection of 11 to the well known DGDP (13). Compound 2 was similarly transformed into the tri-orthogonally protected DGDP derivative 18.  相似文献   

14.
Kenji Mori 《Tetrahedron letters》2007,48(32):5609-5611
Absolute configuration of gomadalactones A (1), B (2) and C (3), the pheromone components of the white-spotted longicorn beetle (Anoplophora malasiaca) was assigned as (1S,4R,5S)-1, (1R,4R,5R)-2 and (1S,4R,5S,8S)-3 by comparing their published CD spectra with those of (1R,5R)-(+)-4,4,8-trimethyl-3-oxabicyclo[3.3.0]oct-7-ene-2,6-dione (4) and (1S,5R,8S)-(+)-4,4,8-trimethyl-3-oxabicyclo[3.3.0]octane-2,6-dione (5) prepared from (R)-(−)-carvone (6).  相似文献   

15.
Palladium-catalyzed cyclization-methoxycarbonylation of (2R,3S)-3-methylpenta-4-yne-1,2-diol (6) derived from (2R,3S)-epoxy butanoate 7 followed by methylation gave the tetrahydro-2-furylidene acetate (−)-10, which was converted to the left-half aldehyde (+)-3. A Wittig reaction between (+)-4 and the phosphoranylide derived from the bithiazole-type phosphonium iodide 4 using lithium bis(trimethylsilyl)amide afforded the (+)-cystothiazole A (2).  相似文献   

16.
β2-(3,4-Dihydroxybenzyl)-β-alanine [β2-Homo-Dopa, 1] is a novel β-amino acid homologue of Dopa, the most successful therapeutic agent in the treatment of Parkinson's disease. Enantioenriched (R)-1 and (S)-1 were obtained via the diastereoselective alkylation of enantiopure pyrimidinone (R)- and (S)-3, chiral derivatives of β-alanine, with veratryl iodide. The major diastereomeric products (2S,5R)-4 and (2R,5S)-4 were hydrolyzed with 57% HBr, and the desired β-amino acids were purified by silica gel chromatography. Alternatively, enantioenriched (R)- and (S)-1 were prepared by means of the highly diastereoselective alkylation (3,4-dimethoxybenzyl iodide) of open-chain β-aminopropionic acid derivatives (R,R,S)-8 and (S,S,R)-8 containing the chiral auxiliary α-phenylethylamine. Finally, nearly enantiopure (R)- and (S)-1 were obtained by resolution of racemic N-benzyloxycarbonyl-2-(3,4-dibenzyloxybenzyl)-3-aminopropionic acid, rac-12, with (R)- or (S)-α-phenylethylamine, followed by catalytic hydrogenolysis.  相似文献   

17.
Kazuhiko Sakaguchi 《Tetrahedron》2003,59(34):6647-6658
Cationic rearrangement of several α-hydroxysilanes is described. Treatment of both (1R,1′R,2′S)-α-hydroxycyclopropylsilane syn-9 and (1S,1′R,2′S)-anti-9 under aqueous H2SO4 underwent rearrangement via a common α-silyl cation intermediate A to give a mixture of the ring-opened (R)-vinylsilane 13, the tandem [1,2]-CC bond migration product (1R,2S,1′R)-14, and its 1′S isomer 15. On the other hand, the acidic treatment of (R,E)-α-hydroxyalkenylsilane 8 or (R,Z)-8 was each accompanied with partial racemization to give an enantiomeric isomer of allylic alcohol 23 via a preferential syn-facial SN2′ reaction, respectively. Both α-hydroxyalkynylsilane 6 and α-hydroxyalkylsilane 12 were inert to the acidic conditions; however, treatment of (R)-α-mesyloxyalkynylsilane 26 under aqueous H2SO4 gave a mixture of the optically active rearranged allene 27, α,β-unsaturated ketone 28, and (S)-α-hydroxyalkynylsilane 6 with partial racemization. Comparisons of the reactivities of these α-hydroxysilanes under acidic conditions are also disclosed.  相似文献   

18.
Palladium-catalyzed cyclization-methoxycarbonylation of (2R,3S)-3-methylpent-4-yne-1,2-diol (6) derived from (2R,3S)-epoxybutanoate 5 followed by methylation gave the tetrahydro-2-furylidene acetate (−)-7, which was converted to the left-half aldehyde (+)-3. A Wittig reaction between (+)-3 and the phosphoranylide derived from the bithiazole-type phosphonium iodide 4 using lithium bis(trimethylsilyl)amide afforded the (+)-cystothiazole G (2), whose spectral data were identical with those of the natural product (+)-2. Thus, the stereochemistry of cystothiazole G (2) was proved to be (4R,5S,6(E)).  相似文献   

19.
To synthesize (3′R,5′S)-3′-hydroxycotinine [(+)-1], the main metabolite of nicotine (2), cycloaddition of C-(3-pyridyl)nitrones 3a, 3c, and 15 with (2R)- and (2S)-N-(acryloyl)bornane-10,2-sultam [(2R)- and (2S)-8] was examined. Among them, l-gulose-derived nitrone 15 underwent stereoselective cycloaddition with (2S)-8 to afford cycloadduct 16, which was elaborated to (+)-1.  相似文献   

20.
A novel and simple process for the preparation of enantiomerically pure (SS)-benzenesulfinamide (SS)-3a, (SS)-p-toluenesulfinamide (SS)-3b, (SS)-p-chloro-benzenesulfinamide (SS)-3c and (SS)-p-fluorobenzenesulfinamide (SS)-3d has been developed. The treatment of arylsulfinyl chlorides with (R)-N-benzyl-1-phenylethanamine in the presence of excess triethylamine gave diastereomeric mixtures of N-benzyl-N-(1-phenylethyl)-arylsulfinamides 1, which underwent spontaneous crystallization to furnish diastereomerically pure (R,SS)-N-benzyl-N-(1-phenylethyl)-arylsulfinamides (R,SS)-1a-1d in 28%, 29%, 27% and 31% yields, respectively. The diastereomerically pure compounds (R,SS)-1 were then converted into four enantiopure (RS)-methyl arylsulfinates (RS)-2, and finally into four enantiopure (SS)-arylsulfinamides (SS)-3 in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号