首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental (liquid + liquid) equilibria involving ionic liquids {1,3-dimethylimidazolium methyl sulfate (MMIM MeSO4)}, {2-propanol + ethyl acetate + 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM PF6)} and {2-propanol + ethyl acetate + 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIM PF6)} were carried out to separate the azeotropic mixture ethyl acetate and 2-propanol. Selectivity and distribution ratio values, derived from the tie-lines data, were presented in order to analyze the best separation solvent in a liquid extraction process. Experimental (liquid + liquid) equilibria data were compared with the correlated values obtained by means of the NRTL, Othmer-Tobias and Hand equations. These equations were verified to accurately correlate the experimental data.  相似文献   

2.
The Lewis acid/base adducts [MCl4{NH(R)(SiR′3)}] (M = Zr, Hf; R = tBu, R′ = Me; R = SiR′3 = SiMe3, SiMe2H) were synthesized by the 1:1 reaction of MCl4 with NH(R)(SiR′3) in dichloromethane solution at room temperature. The decomposition of [MCl4{NH(R)(SiR′3)}] proceeds with the elimination of R′3SiCl, as shown by thermogravimetric analysis. Pyrolysis of the compounds at 620 °C under inert conditions (N2, vacuum) afforded powders of composition [ClMN] or [Cl2MNH]. Preliminary low pressure chemical vapour deposition experiments show that [MCl4{NH(R)(SiR′3)}] deposits thin films of metal nitride contaminated with metal oxide.  相似文献   

3.
Ph2SiCl2 and PhMeSiCl2 react with Li2E (E = S, Se, Te) under formation of trimeric diorganosilicon chalcogenides (PhRSiE)3 (R = Ph: 1a-3a, R = Me: cis/trans-4a (E = S), cis/trans-5a (E = Se)). In case of E = S, Se dimeric four-membered ring compounds (PhRSiE)2 (R = Ph: 1b-2b, R = Me: cis/trans-4b (E = S), cis/trans-5b (E = Se)) have been observed as by-products. 1a-5b have been characterized by multinuclear NMR spectroscopy (1H, 13C, 29Si, 77Se, 125Te). Four- and six-membered ring compounds differ significantly in 29Si and 77Se chemical shifts as well as in the value of 1JSiSe.The molecular structures of 2a, 3a and trans-5a reported in this paper are the first examples of compounds with unfused six-membered rings Si3E3 (E = Se, Te). The Si3E3 rings adopt twisted boat conformations. The crystal structure of 3a reveals an intermolecular Te-Te contact of 3.858 Å which yields a dimerization in the solid state.  相似文献   

4.
The geometries and isomerization of the imine germylenoid HNGeNaF as well as its insertion reactions with R-H (R = F, OH, NH2, CH3) have been systematically investigated at the B3LYP/6-311+G level of theory. The potential barriers of the four insertion reactions are 117.2, 172.6, 219.7, and 322.3 kJ/mol, respectively. Here, all the mechanisms of the four reactions are identical to each other, i.e., an intermediate has been formed first during the insertion reaction. Then, the intermediate could dissociate into the substituted germylene (HNGeHR) and NaF with a barrier corresponding to their respective dissociation energies. Correspondingly, the reaction energies for the four reactions are 185.0, 208.1, 224.4, and 266.9 kJ/mol, respectively, which are linearly correlated with the calculated barrier heights. Compared with the insertion reaction of HNGe: and R-H, the introduction of NaF makes the insertion reaction occur easily though it is more difficult to proceed than that of insertion reaction between H2GeNaF and R-H. Furthermore, the effects of halogen (F, Cl, Br) substitution and inorganic salts employed on the reaction activity have also been discussed. As a result, the relative reactivity among the four insertion reactions should be as follows: H-F > H-OH > H-NH2 > H-CH3.  相似文献   

5.
The H2 elimination reactions of the germylenoid H2GeLiF with RH (R = F, OH, NH2) have been studied by using the DFT B3LYP and QCISD methods. The calculated results indicate that all the mechanisms of the three reactions are identical to each other and under the same condition the H2 elimination reactions should occur easily in the order of H-F > H-OH > H-NH2. In THF solvent the H2 elimination reactions get more difficult than in gas phase. Compared with the insertion reactions of H2GeLiF with RH (R = F, OH, NH2), the H2 elimination reactions have the lower activation barriers and should be more favorable.  相似文献   

6.
Three novel metal-organic frameworks [M(1,3-BDC)(Dpdq)(H2O)m] · nH2O, (M = CoII (1), CdII (2) or ZnII (3); m = 0, 1; n = 0, 1, 2, respectively) have been obtained from hydrothermal reactions of three different metal(II) nitrates with the same mixed ligands [isophthalic acid (1,3-BDC) and 2,3-di-2-pyridylquinoxaline (Dpdq)], and structurally characterized by elemental analyses, IR spectroscopy, and single-crystal X-ray diffraction analyses. Single-crystal X-ray analyses show that each pair of metal ions are bridged by various coordination modes of 1,3-BDC ligands to form left- and right-handed helical chains in 1, linear chains in 2, and double chains in 3, respectively. N-containing flexible ligand Dpdq takes a chelating coordination mode acting as terminal ligand. In the compound 1, adjacent left- and right-handed helical chains are packed through hydrogen bonds to form a two-dimensional (2-D) structure. In the compounds 2 and 3, adjacent chains are further linked by hydrogen bonds and/or π-π stacking interactions to form a three-dimensional (3-D) distorted hexagon meshes supramolecular framework for 2 and a ZnS-related three-dimensional (3-D) topology for 3, respectively. The different structures of compounds 1-3 illustrate that the influence of the metal ions in the self-assembly of polymeric coordination architectures. In addition, compounds 2 and 3 exhibit blue emission in the solid state at room temperature.  相似文献   

7.
In this investigation, the quaternary aqueous solutions of chlorides charge-type 1-1*2-1*2-1 with a cation (Na+; NH4+; Mg2+; Ca2+) have been studied using the hygrometric method at 298.15 K. The water activities of the systems NH4Cl + MgCl2 + CaCl2 + H2O and NaCl + MgCl2 + CaCl2 + H2O are measured at total molalities from 0.60 mol kg−1 to saturation for different ionic-strength fractions NH4Cl or NaCl, y = 0.20, 0.50, 0.80, and z ratio ionic-strength for other solutes, with z = 0.20, 0.50 and 0.80 for each y. The obtained data allow the deduction of osmotic coefficients.  相似文献   

8.
A range of new small bite-angle diphosphine complexes, [M(CO)4{X2PC(R1R2)PX2}] (M = Mo, W; X = Ph, Cy; R1 = H, Me, Et, Pr, allyl, R2 = Me, allyl), have been prepared via elaboration of the methylene backbones in [M(CO)4(X2PCH2PX2)] as a result of successive deprotonation and alkyl halide addition. When X = Ph it proved possible to replace both methylene protons but for X = Cy only one substitution proved possible. This is likely due to the electron-releasing nature of the cyclohexyl groups but may also be due to steric constraints. Attempts to prepare the bis(allyl) substituted complex [Mo(CO)4{Ph2PC(allyl)2PPh2}] were only moderately successful. The crystal structures of nine of these complexes are presented.  相似文献   

9.
New compounds of the type M2(H2F3)(HF2)2(AF6) with M = Ca, A = As and M = Sr, A = As, P) were isolated. Ca2(H2F3)(HF2)2(AsF6) was prepared from Ca(AsF6)2 with repeated additions of neutral anhydrous hydrogen fluoride (aHF). It crystallizes in a space group P4322 with a = 714.67(10) pm, c = 1754.8(3) pm, V = 0.8963(2) nm3 and Z = 4. Sr2(H2F3)(HF2)2(AsF6) was prepared at room temperature by dissolving SrF2 in aHF acidified with AsF5 in mole ratio SrF2:AsF5 = 2:1. It crystallizes in a space group P4322 with a = 746.00(12) pm, c = 1805.1(5) pm, V = 1.0046(4) nm3 and Z = 4. Sr2(H2F3)(HF2)2(PF6) was prepared from Sr(XeF2)n(PF6)2 in neutral aHF. It crystallizes in a space group P4122 with a = 737.0(3) pm, c = 1793.7(14) pm, V = 0.9744(9) nm3 and Z = 4. The compounds M2(H2F3)(HF2)2(AF6) gradually lose HF at room temperature in a dynamic vacuum or during being powdered for recording IR spectra or X-ray powder ray diffraction patterns. All compounds are isotypical with coordination of nine fluorine atoms around a metal center forming a distorted Archimedian antiprism with one face capped. This is the first example of the compounds in which H2F3 and HF2 anions simultaneously bridge metal centers forming close packed three-dimensional network of polymeric compounds with low solubility in aHF. The HF2 anions are asymmetric with usual F?F distances of 227.3-228.5 pm. Vibrational frequency (ν1) of HF2 is close to that in NaHF2. The anion H2F3 exhibits unusually small F?F?F angle of 95.1°-97.6° most probably as a consequence of close packed structure.  相似文献   

10.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

11.
A hyphenated ion-pair (tetrabutylammonium chloride—TBACl) reversed phase (C18) HPLC-ICP-MS method (High Performance Liquid Chromatography Inductively Coupled Plasma Mass Spectroscopy) for anionic Rh(III) aqua chlorido-complexes present in an HCl matrix has been developed. Under optimum chromatographic conditions it was possible to separate and quantify cationic Rh(III) complexes (eluted as a single band), [RhCl3(H2O)3], cis-[RhCl4(H2O)2], trans-[RhCl4(H2O)2] and [RhCln(H2O)6−n]3−n (n = 5, 6) species. The [RhCln(H2O)6−n]3−n (n = 5, 6) complex anions eluted as a single band due to the relatively fast aquation of [RhCl6]3− in a 0.1 mol L−1 TBACl ionic strength mobile phase matrix. Moreover, the calculated t1/2 of 1.3 min for [RhCl6]3− aquation at 0.1 mol kg−1 HCl ionic strength is significantly lower than the reported t1/2 of 6.3 min at 4.0 mol kg−1 HClO4 ionic strength. Ionic strength or the activity of water in this context is a key parameter that determines whether [RhCln(H2O)6−n]3−n (n = 5, 6) species can be chromatographically separated. In addition, aquation/anation rate constants were determined for [RhCln(H2O)6−n]3−n (n = 3-6) complexes at low ionic strength (0.1 mol kg−1 HCl) by means of spectrophotometry and independently with the developed ion-pair HPLC-ICP-MS technique for species assignment validation. The Rh(III) samples that was equilibrated in differing HCl concentrations for 2.8 years at 298 K was analyzed with the ion-pair HPLC method. This analysis yielded a partial Rh(III) aqua chlorido-complex species distribution diagram as a function of HCl concentration. For the first time the distribution of the cis- and trans-[RhCl4(H2O)2] stereoisomers have been obtained. Furthermore, it was found that relatively large amounts of ‘highly’ aquated [RhCln(H2O)6−n]3−n (n = 0-4) species persist in up to 2.8 mol L−1 HCl and in 1.0 mol L−1 HCl the abundance of the [RhCl5(H2O)]2− species is only 8-10% of the total, far from the 70-80% as previously proposed. A 95% abundance of the [RhCl6]3− complex anion occurs only when the HCl concentration is above 6 mol L−1. The detection limit for a Rh(III) species eluted from the column is below 0.147 mg L−1.  相似文献   

12.
Francesco Crea 《Talanta》2007,71(2):948-963
In this paper we investigated the interactions between dioxouranium(VI) and oxalate using (H+-glass electrode) potentiometry and titration calorimetry. Potentiometric measurements were carried out in NaCl aqueous solutions and at T = 25 °C in a wide range of experimental conditions (concentrations, ligand/metal molar ratio, pH, titrants) at low ionic strength values (I ≤ 0.090 mol L−1, without supporting electrolyte) and at I = 1.0 mol L−1; different procedures were employed for the acquisition of experimental data and careful analysis of these data performed. In all cases the speciation model that best fits experimental data takes into account the formation of the binary mononuclear species UO2(ox)0, UO2(ox)22−, UO2(ox)34− widely reported in literature, the ternary hydroxyl mononuclear species UO2(ox)OH, UO2(ox)(OH)22−, UO2(ox)2OH3−, UO2(ox)3OH5−, the protonated ternary mononuclear species UO2(ox)3H3− and the binuclear species (UO2)2(ox)56−.Calorimetric measurements were carried out following similar procedures and in the same experimental conditions as employed for the potentiometric measurements at I = 1.0 mol L−1 in NaCl. The stability of UO22+-oxalate2− complexes is fairly high and their main contribution to stability is entropic in nature. Some linear empirical relationships were found which make it possible to calculate (i) the contribution of a single bond: and ; (ii) chelate stabilisation per ring: and and (iii) the mean stability of negatively charged Na+-ion pair complexes: logTK = (0.46 ± 0.02)·|z| (z = charge of complex species), ΔG° = −(2.60 ± 0.1)·|z| kJ mol−1 and TΔS° = 2.5 ± 0.5 kJ mol−1. Both potentiometric and calorimetric results provide evidence of the penta-coordination of the species UO2(ox)34−. SIT parameters were calculated from the data at I = 0 and I = 1.02 mol kg−1. Comparisons are made with literature data. An insoluble dioxouranium(VI) ternary complex was synthesised (at I = 1.0 mol L−1 in NaCl) and characterised by thermoanalysis and elemental analysis.  相似文献   

13.
A series of mononuclear [M(EAr)2(dppe)] [M = Pd, Pt; E = Se, Te; Ar = phenyl, 2-thienyl; dppe = 1,2-bis(diphenylphosphino)ethane] complexes has been prepared in good yields by the reactions of [MCl2(dppe)] and corresponding ArE with a special emphasis on the aryltellurolato palladium and -platinum complexes for which the existing structural information is virtually non-existent. The complexes have crystallized in five isomorphic groups: (1) [Pd(SePh)2(dppe)] and [Pt(SePh)2(dppe)], (2) [Pd(TePh)2(dppe)] and [Pt(TePh)2(dppe)], (3) [Pd(SeTh)2(dppe)], (4) [Pt(SeTh)2(dppe)] and [Pd(TeTh)2(dppe)], and (5) [Pt(TePh)2(dppe)]. In addition, solvated [Pd(TePh)2(dppe)] · CH3OH and [Pd(TeTh)2(dppe)] · 1/2CH2Cl2 could be isolated and structurally characterized. The metal atom in each complex exhibits an approximate square-planar coordination. The Pd-Se, Pt-Se, Pd-Te, and Pt-Te bonds span a range of 2.4350(7)-2.4828(7) Å, 2.442(1)-2.511(1) Å, 2.5871(7)-2.6704(8) Å, and 2.6053(6)-2.6594(9) Å, respectively, and the respective Pd-P and Pt-P bond distances are 2.265(2)-2.295(2) Å and 2.247(2)-2.270(2) Å. The orientation of the arylchalcogenolato ligands with respect to the M(E2)(P2) plane has been found to depend on the E-M-E bond angle. The NMR spectroscopic information indicates the formation of only cis-[M(EAr)2(dppe)] complexes in solution. The trends in the 31P, 77Se, 125Te, and 195Pt chemical shifts expectedly depend on the nature of metal, chalcogen, and aryl group. Each trend can be considered independently of other factors. The 77Se or 125Te resonances appear as second-order multiplets in case of palladium and platinum complexes, respectively. Spectral simulation has yielded all relevant coupling constants.  相似文献   

14.
Several cobalt(II) phosphine complexes have been synthesized by reacting cobalt(II) chloride with various mono- and diphenylalkylphosphines (PRxPh3 − x; R = methyl, ethyl, allyl, propyl, isopropyl, cyclohexyl; x = 1, 2). For some of these complexes single crystals were obtained and their molecular structure, were determined by X-ray diffraction method. All the complexes were then used in association with MAO for the polymerization of 1,3-butadiene and they were found to be extremely active. Predominantly 1,2 polymers having different tacticity (predominantly iso- or syndiotactic), depending on the type of phosphine ligand bonded to the cobalt atoms were obtained. An interpretation of this particular behavior, based on the diene polymerization mechanism previously proposed, is reported.  相似文献   

15.
Herein we report on the preparation of hydrated ammonium salts of the dithiophosphonic acids (RO)(Fc)P(S)(SH) (R = derivative of benzyl) featuring [(NH4 · H2O)2]2+ cations formed by N-H?O hydrogen bonds. Interaction of these cations with the PS2 units gives rise to unprecedented 2D networks, formed solely by hydrogen bonds. These unique networks containing two- and three centered hydrogen bonds are valuable examples of the acceptor properties of sulfur atoms.  相似文献   

16.
The (p, ρ, T) properties of pure methanol, the (p, ρ, T) properties and apparent molar volumes V? of ZnBr2 in methanol at T = (298.15 to 398.15) K and pressures up to p = 40 MPa are reported, and apparent molar volumes have been evaluated. The experimental (p, ρ, T, m) values were described by an equation of state. For the solutions the experiments were carried out at molalities m = (0.05772, 0.37852, 0.71585 and 1.95061) mol · kg−1 of zinc bromide.  相似文献   

17.
The new mixed Sb2O-donor ligands O{(CH2)2SbR2}2 (R = Ph, 1; R = Me, 2) with flexible backbones have been prepared in good yields as air-sensitive oils from reaction of NaSbR2 with 0.5 mol equivalents of O(CH2CH2Br)2 in thf solution. The As2O-donor analogues, O{(CH2)2AsR2}2 (R = Ph, 3; R = Me, 4) were obtained similarly from LiAsPh2 or NaAsMe2, respectively and O(CH2CH2Br)2, although ligand 4 appears to be considerably less stable with respect to C-O bond fission under some conditions than the other ligands. Using O(CH2CH2Cl)2 leads only to partial substitution by the SbPh2 or AsPh2 nucleophile. These ligands behave as bidentate chelating Sb2- or As2-donors in the distorted tetrahedral [M(L-L)2]BF4 (M = Cu or Ag; L-L = 1-4) on the basis of solution 1H and 63Cu NMR spectroscopic studies, mass spectrometry and microanalyses. Crystal structures of three representative examples with Cu(I) and Ag(I) confirm the distorted tetrahedral Sb4 or As4 coordination at the metal and allow comparisons of geometric parameters. The crystallographic identification of an unexpected Cu(I)-Cu(I) complex, [Cu2{Me2As(CH2)2OH}3](BF4)2, obtained as a by-product via C-O bond fission within ligand 4 is also reported. The distorted octahedral [RhCl2(L-L)2]Cl and the distorted square planar cis-[PtCl2(L-L)] (L-L = 1 or 2) are also described. The ether O atoms are not involved in coordination to the metal ion in any of the late transition metal complexes isolated.  相似文献   

18.
(PhSe)2 reacts with Br2, ethylenethiourea and PhTeBr3, further with I2, ethylenethiourea and PhTeI3, to give [PhSe(etu)][PhTeBr4] (1) (Ph = phenyl; etu = ethylenethiourea) and [PhSe(etu)][PhTeI4] (2) in very good yields.The tellurium centers present a distorted octahedral configuration, achieved through dimerization involving secondary, reciprocal Te···X interactions.In both compounds the anionic dimmers are linked through X···X interactions, attaining a one-dimensional, polymeric assembly along the b axis. Cations and anions are linked through short Se···X contacts. In addition to single crystal X-ray data, multinuclear NMR results for 1 and 2 are also presented and discussed.  相似文献   

19.
We describe reactions of [99mTc(H2O)3(CO)3)]+ (1) with Diels-Alder products of cyclopentadiene such as “Thiele’s acid” (HCp-COOH)2 (2) and derivatives thereof in which the corresponding [(Cp-COOH)99mTc(CO)3)] (3) complex did form in water. We propose a metal mediated Diels-Alder reaction mechanism. To show that this reaction was not limited to carboxylate groups, we synthesized conjugates of 2 (HCp-CONHR)2 (4a-c) (4a, R = benzyl amine; 4b, R = Nα-Boc-l-2,3-diaminopropionic acid and 4c, R = glycine). The corresponding 99mTc complexes [(4a)99mTc(CO)3)] 6a, [(4b)99mTc(CO)3)] 6b and [(4c)99mTc(CO)3)] 6c have been prepared along the same route as for Thiele’s acid in aqueous media demonstrating the general applicability of this synthetic strategy. The authenticity of the 99mTc complexes on the no carrier added level have been confirmed by chromatographic comparison with the structurally characterized manganese or rhenium complexes.Studies of the reaction of 1 with Thiele’s acid bound to a solid phase resin demonstrated the formation of [(Cp-COOH)99mTc(CO)3)] 3 in a heterogeneous reaction. This is the first evidence for the formation of no carrier added 99mTc radiopharmaceuticals containing cyclopentadienyl ligands via solid phase syntheses. Macroscopically, the manganese analogue 5a and the rhenium complexes 5b-c have been prepared and characterized by IR, NMR, ESI-MS and X-ray crystallography for 5a (monoclinic, P21/c, a = 9.8696(2) Å, b = 25.8533(4) Å, c = 11.8414(2) Å, β = 98.7322(17)°) in order to unambiguously assign the authenticity of the corresponding 99mTc complexes.  相似文献   

20.
The first Pd(II) and Pt(II) complexes incorporating diselenophosphate (dsep) ligands are presented. Treatment of M(II) (M = Pd, Pt) salts with two equivalents of the dsep ligand in CH2Cl2 yielded square-planar compounds of the type M[Se2P(OR)2]2 (M = Pd, Pt; R = Et, iPr, nPr) (1a2c). These complexes were characterized by elemental analysis, multinuclear NMR spectroscopy and X-ray diffraction (1b and 2b). The dsep ligands coordinate to the metal in an approximately isobidentate fashion and form four-membered Se–P–Se–M chelate rings. Structural elucidations indicated that minute differences exist in the M–Se bond distances and these were observed from solution 31P NMR studies, which exhibited two sets of satellites arising from one-bond coupling to 77Se nuclei. A packing diagram showed a chain-like motif which was composed of square-planar M[Se2P(OR)2]2 units and occurred via non-covalent Se?Se secondary interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号