首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of microwave-accelerated derivatization for capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection was evaluated. The derivatization reaction was performed in a domestic microwave oven. Histidine (His), 1-methylhistidine (1-MH) and 3-methylhistidine (3-MH) were selected as test analytes and fluorescein isothiocyanate (FITC) was chosen as a fluorescent derivatizing reagent. Parameters that may affect the derivatization reaction and/or subsequent CE separation were systematically investigated. Under optimized conditions, the microwave-accelerated derivatization reaction was successfully completed within 150 s, compared to 4-24 h in a conventional water-bath derivatization process. This will remarkably reduce the overall analysis time and increase sample throughput of CE-LIF. The detection limits of this method were found to be 0.023 ng/mL for His, 0.023 ng/mL for 1-MH, and 0.034 ng/mL for 3-MH, respectively, comparable to those obtained using traditional derivatization protocols. The proposed method was characterized in terms of precision, linearity, accuracy and successfully applied for rapid and sensitive determination of these analytes in human urine.  相似文献   

2.
CE with capacitively coupled contactless conductivity detection (C(4)D) was used to determine waste products of the nitrogen metabolism (ammonia and creatinine) and of biogenic inorganic cations in samples of human urine. The CE separation was performed in two BGEs, consisting of 2 M acetic acid + 1.5 mM crown ether 18-crown-6 (BGE I) and 2 M acetic acid + 2% w/v PEG (BGE II). Only BGE II permitted complete separation of all the analytes in a model sample and in real urine samples. The LOD values for the optimized procedure ranged from 0.8 microM for Ca(2+) and Mg(2+) to 2.9 microM for NH(4)(+) (in terms of mass concentration units, from 7 microg/L for Li(+) to 102 microg/L for creatinine). These values are adequate for determination of NH(4)(+), creatinine, Na(+), K(+), Ca(2+) and Mg(2+) in real urine samples.  相似文献   

3.
We describe a new CE method with UV-detection for the quantification of histidine (His) and its methylated forms 1-methylhistidine and 3-methylhistidine, both in plasma and urine. Analytes were basically resolved using a 60?mmol/L Tris-phosphate run buffer pH 2.2 in less than 12?min. The use of a mixture of ACN/ammonia (80:20) for protein precipitation allows the quantitative recovery of all His from plasma. The optimization of the sample volume injection permits to reach an LOD of 20?nmol/L, thus improving the sensitivity of about hundred times in comparison to the previous described assays. Moreover, the opportunity to also measure creatinine in the same run makes it possible to evaluate the renal function contemporarily, thus avoiding further dosages with significant time saving. The application method has been proved by measuring His, 1-methylhistidine and 3-methylhistidine in 44 healthy subjects. In conclusion, our new method seems to be an inexpensive, fast and specific tool to assess large numbers of patients for routine analysis both in clinical and research laboratories.  相似文献   

4.
Kok MG  de Jong GJ  Somsen GW 《Electrophoresis》2011,32(21):3016-3024
Analyte responses in CE‐ESI‐MS using negative ionization are frequently relatively low, thereby limiting sensitivity in metabolomics applications. In order to enhance the ionization efficiency of anionic metabolites, BGEs and sheath liquids (SLs) of various compositions were evaluated. Pressure‐induced infusion and CE‐MS experiments showed that addition of triethylamine (TEA) to the BGE and SL enhanced analyte intensities. A BGE consisting of 25 mM TEA (pH 11.7) and an SL of water–methanol (1:1, v/v) containing 5 mM TEA was selected, providing separation and detection of ten representative test metabolites with good reproducibility (migration time RSDs<1%) and linearity (R2>0.99). This BGE yielded lower limits of detection (0.7–9.1 μM) for most test compounds when compared with common CE‐MS methods using a BGE and SL containing ammonium acetate (NH4Ac) (25 and 5 mM, respectively). CE‐MS of human urine revealed an average amount of 231 molecular features in negative ionization mode when TEA was used in the BGE and SL, whereas 115 and 102 molecular features were found with an NH4Ac‐containing BGE and SL, employing a bare fused‐silica (BFS) and Polybrene‐dextran sulfate‐Polybrene (PB‐DS‐PB)‐coated capillary, respectively. With the CE‐MS method using TEA, about 170 molecular features were observed that were not detected with the NH4Ac‐based CE‐MS methods. For more than 82% of the molecular features that were detected with the TEA as well as the NH4Ac‐containg BGEs (i.e. common features), the peak intensities were higher using TEA with gain factors up to 7. Overall, the results demonstrate that BGEs and SLs containing TEA are quite favorable for the analysis of anionic metabolites in CE‐MS.  相似文献   

5.
A reversed-phase high-performance liquid chromatographic method is described for the determination of 3-methylhistidine content in human urine using pre-column derivatization with phenylisothiocyanate, isocratic elution with 15 mM sodium acetate-acetonitrile (92:8, v/v) and electrochemical detection. The limit of quantitation was 0.1 pmol. The method has been applied in routine analyses of 3-methylhistidine in both clinical and research work.  相似文献   

6.
In this study, ionic liquids (ILs) as BGE additives were applied for the analysis of neutral carbohydrates in CE. The ILs served primarily as chromophores for indirect UV detection. The influence of imidazolium-based ionic liquids on the separation, detection limits and mobility of underivatized neutral carbohydrates was investigated. BGEs consisting of 10-50 mM of ILs at pH 12.4 without other additives provided fast separation of neutral sugars. This method was used to determine sucrose, glucose and fructose in certain vegetable juices.  相似文献   

7.
Mo H  Zhu L  Xu W 《Journal of separation science》2008,31(13):2470-2475
Separation of inorganic anions in CE is often a challenging task because the electrophoretic mobilities of inorganic anions are comparable to or even greater than the EOF mobility. In this study, we present the use of ionic liquids (ILs) as background electrolytes (BGEs) in CE of inorganic anions. The 1-alkyl-3-methylimidazolium-based ILs as BGEs dynamically coated the capillary wall and induced a reversed EOF. This allowed the anions to comigrate with the EOF and yielded a rapid separation. Increasing the alkyl chain length of the ILs and BGE concentration can significantly improve the separation resolution. With 40 mM 1-butyl-3-methylimidazolium tetrafluoroborate as BGE, good separations of five model anions (Br-, I-, NO2(-), NO3(-), and SCN-) were achieved in a range of buffer pH values. The separation efficiency was as high as 34 600-155 000, and the RSDs of the migration times were less than 0.8% (n = 5).  相似文献   

8.
A generic approach has been developed for coupling capillary electrophoresis (CE) using non-volatile background electrolytes (BGEs) with mass spectrometry (MS) using a sheath liquid interface. CE-MS has been applied for basic and bi-functional compounds using a BGE consisting of 100 mM of TRIS adjusted to pH 2.5 using phosphoric acid. A liquid sheath effect is observed which may influence the CZE separation and hence may complicate the correlation between CE-UV and CE-MS methods. The influence of the liquid sheath effect on the migration behavior of basic pharmaceuticals has been studied by simulation experiments, in which the BGE outlet vial is replaced by sheath liquid in a CE-UV experiment. As a consequence of the liquid sheath effect, phosphate based BGEs can be used without significant loss of MS sensitivity compared to volatile BGEs. The use of buffer constituents such as TRIS can lead to lower detection limits as loss of MS sensitivity can be compensated by better CE performance. TRIS based BGEs permit relatively high injection amounts of about 100 pmol while maintaining high resolution. The ESI-MS parameters were optimized for a generic method with maximum sensitivity and stable operation, in which the composition of the sheath liquid and the position of the capillary were found to be important. Furthermore, the nebulizing pressure strongly influenced the separation efficiency. The system showed stable performance for several days and a reproducibility of about 15% RSD in peak area has been obtained. Nearly all test compounds used in this study could be analyzed with an MS detection limit of 0.05% measured in scan mode using extracted ion chromatograms. As a result, CE-MS was found to be a valuable analytical tool for pharmaceutical impurity profiling.  相似文献   

9.
A procedure based on automated amino acid analysis has been developed to simultaneously quantify 1-methylhistidine (1-MH), 3-methylhistidine (3-MH), tyrosine, phenylalanine, tryptophan, lysine, histidine and arginine levels in human and rat urines. Deproteinized urine samples containing amino acids in the range 1-10 nmol were analyzed using single-column methodology with ninhydrin detection. Standard curves produced correlation coefficients greater than or equal to 0.99 with duplicate analyses agreeing to within +/- 1.9%. Quantitative recovery was ensured by using L-alpha-amino-beta-guanidinopropionic acid as an internal standard. Elution was accomplished in less than 90 min at pH 5.7 with sodium citrate buffers at 45 degrees C and 65 degrees C. Since 3-MH in the rat is acetylated at the alpha-amino group, rat, but not human, urine ultrafiltrates required acid hydrolysis prior to analysis. The utility of the technique of analysis of 1-MH and 3-MH in human urine was demonstrated for an adult male on a meat-free diet for 21 days; urinary excretion rates for 3-MH and 1-MH were determined to be 3.06 +/- 0.10 and 0.72 +/- 0.07 mumol/kg body mass/day, respectively. The technique was also used to measure the effect of disuse atrophy of rat skeletal muscle which induced a 40-60% increase in 3-MH. The procedure is also highly suited for measurement of urinary aromatic and/or basic amino acids.  相似文献   

10.
A method is developed for the determination of substituted methoxy phenols and aromatic acids in biomass burning aerosol using capillary electrophoresis (CE) coupled to an electrospray ionization mass spectrometer. Background electrolytes (BGEs) containing ammonium acetate, ammonium hydroxide and 10% (v/v) methanol at pH 9.1 and ammonium hydroxide at pH 11 are investigated for their suitability. A good linearity is found for all analytes in the range of 1-50 microM for the ammonium acetate based BGE and 1-40 microM for the ammonium hydroxide BGE. The detection limit ranged from 0.1 to 1.0 microM for the ammonium acetate based BGE and 0.3 to 0.7 microM for the ammonium hydroxide BGE. The relative standard deviation (R.S.D.) is typically less than 0.5% (ammonium acetate based BGE) and 4.2% (ammonium hydroxide BGE) for the migration time and 3-9% (ammonium acetate based BGE) and 2.5-8% (ammonium hydroxide BGE) for the peak area (n = 5). The analytical time was less than 10 min for both methods. The proposed methods are fast, sensitive and quantitative and can be applied to the analysis of complex biomass burning aerosol samples without complex pre-treatment. The results from the analysis of real biomass burning samples demonstrate the suitability of the proposed methods to the analysis of low concentration water soluble organic carbon (WSOC) in biomass burning samples. The fast analytical time and high sensitivity of the proposed methods enables the analysis of a large number of size segregated impactor samples from biomass burning aerosols.  相似文献   

11.
The analysis is described for separating seven beta-adrenergic blocking agents (atenolol, celiprolol, clorprenaline, fenoterol, metoprolol, propranolol, terbutaline) and clenbuterol (sympathomimetic beta-2 receptor stimulating agonist, decongestant and bronchodilator, illicit anabolic used in athletics) by CE with UV detection. In order to simultaneously separate all analytes, Tris-H3PO4 solution was applied containing titanium dioxide nanoparticles (TiO2 NPs) as BGEs. The effects of important factors, such as concentration of TiO2 NPs, optimum pH, run buffer concentration, and separation voltage, were investigated so as to achieve best CE separation. The eight analytes could be well separated applying a separation voltage of 15 kV in 75 mM Tris-H3PO4 buffer at a pH of 2.40, containing 6.0 x 10(-6) g/mL TiO2 NPs. Under these optimal conditions, the RSDs for peak areas and for migration times were less than 2.7 and 2.3%, respectively. The detection limits were 0.1 microg/mL for celiprolol, 0.1 microg/mL for propranolol, 0.2 microg/mL for fenoterol, 1.0 microg/mL for atenolol, 1.0 microg/mL for clenbuterol, 1.0 microg/mL for clorprenaline, 1.0 microg/mL for metoprolol, and 1.0 microg/mL for terbutaline. The proposed method was successfully applied for the rapid CE determination of the frequently applied antihypertensive beta-blocking compounds atenolol, metoprolol, terbutaline, and propranolol in pharmaceutical tablets.  相似文献   

12.
Law WS  Kubán P  Zhao JH  Li SF  Hauser PC 《Electrophoresis》2005,26(24):4648-4655
The separation and detection of commonly used preservatives (benzoate, sorbate) and vitamin C by both conventional CE and microchip electrophoresis with capacitively coupled contactless conductivity detection is presented. The separation was optimized by adjusting the pH-value of the buffer and the use of hydroxypropyl-beta-CD (HP-beta-CD) and CTAB as additives. For conventional CE, optimal separation conditions were achieved in a histidine/tartrate buffer at pH 6.5, containing 0.025% HP-beta-CD and 0.1 mM CTAB. LOD ranged from 0.5 to 3 mg/L (S/N = 3) and the RSDs for migration time and peak area were less than 0.1 and 2%, respectively. A considerable reduction of analysis time can be accomplished by using microchip electrophoresis without significant loss in sensitivity under optimal separation conditions. A histidine/tartrate buffer at pH 6.5, incorporating 0.06% HP-beta-CD and 0.25 mM CTAB, gave detection limits ranging between 3 and 10 mg/L and satisfactory reproducibilities of < or =0.4% for the migration time and < or =3.5% for the peak area. The methods developed are useful for the quantitative determination of food additives in real samples such as soft drinks and vitamin C tablets.  相似文献   

13.
A single enzyme treatment with alpha-amylase, prior to the quantification of added folic acid (FA) in fortified instant fried Asian noodles with analysis performed by capillary zone electrophoresis (CZE) and reversed-phase high performance liquid chromatography (RP-HPLC) with UV detection, is described. The method was validated and optimized for capillary electrophoresis (CE) with separation achieved using a 8 mM phosphate-12 mM borate run buffer with 5% MeOH at pH 9.5. FA was well separated from matrix components with nicotinic acid (NA) employed as an internal standard. In a comparative study, separation of FA was performed using HPLC with a mobile phase consisting of 27% MeOH (v/v) in aqueous potassium phosphate buffer (3.5 mM KH(2)PO(4) and 3.2 mM K(2)HPO(4)), pH 8.5, and containing 5 mM tetrabutylammonium dihydrogen phosphate as an ion-pairing agent. For both methods, excellent results were obtained for various analytical parameters including linearity, accuracy and precision. The limit of detection was calculated to be 2.2 mg/L for CE without sample stacking and 0.10 mg/L with high performance liquid chromatography (HPLC). Sample extraction involved homogenization and enzymatic extraction with alpha-amylase. Results indicated that FA was stable during four main stages of instant fried noodle manufacturing (dough crumbs, cut sheets, steaming and frying).  相似文献   

14.
This report presents simultaneous analysis of cations and anions by capillary electrophoresis (CE) in conjunction with indirect fluorescence detection using a blue light-emitting diode (LED), based on the displacement of fluorescein with anionic EDTA-metal complexes and anions. A new focusing system combined with a plastic lens and a 40x objective was developed and used effectively to focus the diverging beam of the LED on the capillary. The optimum compositions for simultaneous analysis of metal ions and anions are the samples prepared in 5 mM borate, pH 9.2, containing 2 mM EDTA and the background electrolytes (BGEs) consisting of 5 mM borate buffer, 5 microM fluorescein, and 1 microM NaCl at pH 9.2. Using this pre-capillary complexation method, the analysis of a sample containing five metal ions and eight anions was accomplished in 8 min, with the relative standard deviation values for the migration times less than 2.0%. The peak heights against the concentrations of the metal ions and anions are linear in 10-1000 and 50-2000 microM, with correlation coefficients better than 0.998, and 0.982, respectively. The limits of detection at a signal-to-noise ratio 3 of up to 14.6 microM for formate and as low as 3.7 microM for Ni2+. The results of the analyses of pond water and a Chinese herbal soup present the advantages of this method, including simplicity, rapidity, reproducibility, and low costs.  相似文献   

15.
Capillary electrophoresis was used for separation and quantitation of several inorganic anions in the drainage and surface water samples from the region with extensive use of fertilisers. Baseline separation of 13 small anions including nitrite and nitrate up to the concentrations of 100 mg/l was achieved in less than 5 min. The electrolyte consisted of 3 mM K2CrO4, 30 microM cetyltrimethylammonium bromide and 3 mM boric acid at pH 8. The method yielded precisions of 1.8-7.2% (RSD, n = 10) and detection limits from 4 micrograms/l (Cl-) up to 500 micrograms/l (citrate). The results of the CE method were compared to ion chromatography using water-acetonitrile (86:14) at pH 8.6 adjusted with NaOH as the mobile phase and consistent results were obtained.  相似文献   

16.
This paper describes the analysis of large DNA fragments at pH > 10.0 by capillary electrophoresis (CE) in the presence of electroosmotic flow (EOF) using hydroxyethylcellulose (HEC) solution. HEC solution in the anodic reservoir enters the capillaries filled with high-pH buffer by EOF after sample injection. With respect to resolution, sensitivity, and speed, separation conducted under discontinuous conditions (different pH values of HEC solutions and buffer filling the capillary) is appropriate. Using HEC solution at concentrations higher than its entanglement threshold ensures a good separation of large DNA fragments in the presence of EOF at high pH. In addition to pH and HEC, the electrolyte species, dimethylamine, methylamine, and piperidine, play different roles in determining the resolution. The separation of DNA fragments ranging in size from 5 to 40 kilo base pairs was completed in 6 min using 1.5% HEC prepared in 20 mM methylamine-borate, pH 12.0, and the capillary filled with 40 mM dimethylamine-borate, pH 10.0. In comparison, this method allows faster separations of large DNA fragments compared with that conducted in the absence of EOF using dilute HEC solutions.  相似文献   

17.
We describe the first analytical method involving SPE and CZE coupled to ESI-IT MS (CZE-ESI-MS) used to identify and characterize phenolic compounds in olive oil samples. The SPE, CZE and ESI-MS parameters were optimized in order to maximize the number of phenolic compounds detected and the sensitivity of their determination. To this end we have devised a detailed method to find the best conditions for CE separation and the detection by MS of the phenolic compounds present in olive oil using a methanol-water extract of Picual extra-virgin olive oil (VOO). Electrophoretic separation was carried out using an aqueous CE buffer system consisting of 60 mM NH(4)OAc at pH 9.5 with 5% of 2-propanol, a sheath liquid containing 2-propanol/water 60:40 v/v and 0.1% v/v triethylamine. This method offers to the analyst the chance to study important phenolic compounds such as phenolic alcohols (tyrosol (TY), hydroxytyrosol (HYTY) and 2-(4-hydroxyphenyl)ethyl acetate), lignans ((+)-pinoresinol and (+)-1-acetoxypinoresinol), complex phenols (ligstroside aglycon (Lig Agl), oleuropein aglycon, their respective decarboxylated derivatives and several isomeric forms of these (dialdehydic form of oleuropein aglycon, dialdehydic form of ligstroside aglycon, dialdehydic form of decarboxymethyl elenolic acid linked to HYTY, dialdehydic form of decarboxymethyl elenolic acid linked to TY) and 10-hydroxy-oleuropein aglycon) and one other phenolic compound (elenolic acid) in extra-VOO by using a simple SPE before CE-ESI-MS analysis.  相似文献   

18.
Kang J  Yin XB  Yang X  Wang E 《Electrophoresis》2005,26(9):1732-1736
An electrochemiluminescence (ECL) inhibition method was developed as an indirect detection method for the determination of dopamine and epinephrine separated by capillary electrophoresis (CE). When the concentration of Ru(bpy)(3) (2+) was 50 muM diluted by 50 mM phosphate (pH 8.5) in the cell and 0.5 M tripropylamine (TPA) was added to the running buffer (10 mM phosphate, pH 9.0), an inhibition of ECL of the Ru(bpy)(3) (2+)/TPA system by the analytes was observed. Under the optimized conditions, the relative standard deviations of migration time and negative peak area were less than 1% and 3%, respectively, for 1 microM dopamine or 1 microM epinephrine (n = 10). Linear ranges of 0.1-10 microM for both analytes and the detection limits (signal-to-noise ratio S/N = 3) of 10 nM for dopamine and 30 nM for epinephrine were obtained.  相似文献   

19.
The usefulness of a noncovalent capillary coating consisting of two layers of oppositely charged polymers for the separation of peptides with capillary electrophoresis (CE) was studied. Capillaries were coated simply by subsequently flushing with solutions of 1% m/v Polybrene and 1% v/v poly(vinylsulfonate) (PVS) forming a bilayer, which showed to produce a strong and highly reproducible electroosmotic flow (EOF) at low pH. Using this coating in combination with a background electrolyte (BGE) containing sodium phosphate (pH 2.5) and 0.01% v/v PVS, initially broadened and overlapping peaks were obtained for some test peptides. By omitting the PVS from the BGE, the peak width and shape of the peptides improved resulting in baseline separation. A systematic study of the influence of the BGE composition showed that considerable further enhancement of the separation efficiency was achieved by increasing the ionic strength of the BGE. Using a BGE of 200 mM tris(hydroxymethyl)aminomethane (Tris)-phosphate (pH 2.5) plate numbers for the peptides were in the 300 000-600 000 range and the relative standard deviation of the peptide migration times was less then 0.3% (n = 5). The use of Tris-phosphate instead of sodium phosphate allowed the current to stay within acceptable limits when 30 kV was used as separation voltage. Overall, the bilayer coating showed a remarkable EOF repeatability, as well as long-term stability. Compared to bare fused-silica capillaries the intraday and interday repeatability of migration times was very favorable and coated capillaries could be used for over a month performing analyses with low and high ionic strength BGEs without any performance deterioration. The usefulness of the bilayer-coated capillaries for the analysis of positively charged peptides was demonstrated by the fast and efficient separation of various closely related enkephalins and the baseline separation of an isomeric peptide/peptoid couple exhibiting efficiencies of over 550 000 plates.  相似文献   

20.
Guan J  Yan F  Shi S  Wang S 《Electrophoresis》2012,33(11):1631-1636
A new CE method using sulfobutylether-beta-cyclodextrin (SBE-beta-CD) as chiral additive was developed and validated for the determination of pantoprazole enantiomers. The primary factors affecting its separation efficiency, which include chiral selector, buffer pH, organic additive, and applied voltage, were optimized. The best results were obtained using a buffer consisting of 50 mM borax-150 mM phosphate adjusted to pH 6.5, 20 mg/mL SBE-beta-CD, and a 10 kV applied voltage. The optimized method was validated for linearity, precision, accuracy, and proved to be robust. The LOD and LOQ for R-(+)-pantoprazole were 0.9 and 2.5 μg/mL, respectively. The method is capable of determining a minimum limit of 0.1% (w/w) of R-enantiomer in S-(-)-pantoprazole bulk samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号