首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mössbauer spectroscopy in longitudinal external fields (up to 7 T) and SQUID magnetometry (up to 5 T) measurements have been carried out on mechanically alloyed (MA) γ (FCC) Fe100−xNix (x=21, 24, and 27 at%) alloys at room temperature. The zero-field Mössbauer spectra of these alloys show only singlets. The high field Mössbauer results indicate that large amounts of the material is in the paramagnetic state, giving rise to two spectral components with their effective fields almost linearly depend on the external field, but with slopes that are smaller than unity. The in-field Mössbauer spectra of the x=27 at% alloy show an additional component with a hyperfine field of ≈21 T, which is attributed to Ni-rich (>30 at% Ni) clusters (domains) of ferromagnetically ordered HM phase that behaves superparamagnetically at room temperature and shows a non-linear character in the magnetization (M–H) curves at low fields. This HM phase is also present in the x=21 and 24 at% samples but with smaller amounts. The results suggest induced hyperfine fields and hence induced moments in the paramagnetic components, which increases with increasing Ni contents. Taenite-enriched samples from the metal particles of two stony meteorites, Al Kidirate (H6) and New Halfa (L4), are also studied by high field Mössbauer spectroscopy and the results are compared to that of MA samples.  相似文献   

2.
BCC, FCC and HCP phases in Fe–13.7 wt% Mn alloys were studied by Mössbauer spectroscopy and X-ray diffraction, after ball milling. The relative amounts of the HCP and FCC phases increase with milling times up to 9 h and decline afterwards. Preliminary AC susceptibility measurements show that the blocking temperatures change for different milling times.  相似文献   

3.
Gibbs energy modeling of iron–nickel pentlandite has been performed using experimental data of ternary phase equilibria. A three-sublattice approach in the framework of the Compound Energy Formalism is developed to refine a two-sublattice model of pentlandite recently applied within a complete assessment of the Fe–Ni–S system. Experimental data about the iron site fraction on the octahedral sublattice at 523.15 K for the composition Fe5Ni4S8 as well as the enthalpy of formation at 298.15 K for the composition Fe4.5Ni4.5S8 are predicted satisfactorily by the novel model. New possibilities to interpret experimental phase equilibrium data on complex phase relations with pentlandite are discussed together on the basis of the recent extension of a second high-temperature heazlewoodite phase to a ternary solution phase.  相似文献   

4.
Effects of titanium carbide (TiC) addition on structural and magnetic properties of isotropic (Pr,Nd)–Fe-B nanocrystalline magnetic materials have been investigated. In this work, we investigate the effect of TiC addition on a (Pr,Nd)-poor and B-rich composition, as well as on a B-poor and (Nd,Pr)-rich composition. Rapidly solidified (Pr,Nd)–Fe–B alloys were prepared by melt-spinning. The compositions studied were (Pr1−xNdx)4Fe78B18 (x=0, 0.5, and 1) with addition of 3 at% TiC. Unlike the (PrxNd1−x)9.5Fe84.5B6 materials that present excellent values for coercive field and energy product, the (Pr,Nd)-poor and B-rich composition alloys with TiC addition present lower values. Rietveld analysis of X-ray data and Mössbauer spectroscopy revealed that samples are predominantly composed of Fe3B and -Fe. For the RE-rich compositions (PrxNd1−x)9.5Fe84.5B6 (x=0.1, 0.25, 0.5, 0.75, and 1) with the addition of 3 at% TiC, the highest coercive field and energy product (8.4 kOe and 14.4 MGOe, respectively) were obtained for the composition Pr9.5Fe84.5B6.  相似文献   

5.
Four Fe–Mn–Si alloys, Fe62Mn32Si6, Fe62Mn20Si5Cr8Ni5, Fe62Mn16Si5Cr12Ni5 and Fe65Mn9Si7Cr10Ni9, were obtained by the melt-spinning method. The samples were structurally, magnetic and shape memory effect (SME) investigated, both “as quenched” and thermally treated. The Mn-rich compositions show different phase, magnetic behavior and SME in comparison with Mn-poor compositions. The thermal treatments generate transformation between the two existing majority phases ( and γ), related magnetization and SME behavior. The features are derived from the corroboration of structural, magnetic interaction and magnitude of SME data.  相似文献   

6.
The crystalline system FexNi75−xP25 was studied in the low iron concentration range by 57Fe Mössbauer spectroscopy and dc-magnetization measurements. From the latter method the magnetic phases were determined to be spin-glass like but on a more local scale, from 57Fe Mössbauer spectroscopy, it was found that the magnetic phases were rather inhomogeneous, therefore leading to not sharp phase transitions in the investigated samples.  相似文献   

7.
X-ray diffraction (XRD) and Mössbauer spectroscopy were used to study the annealing of the Fe40Ni38Mo4B18 amorphous alloy. The samples were isothermally annealed in the 858–878 K temperature range several times. Two crystalline phases were observed in the annealed samples: FeNi3 and (Fe, Ni, Mo)23B6. Preliminary results indicate that assuming a linear relationship between the area under the main XRD peak associated with the FeNi3 phase and its volume fraction, this can be fitted to a Johnson–Mehl–Avrami equation with an exponent n close to 1.0. Mössbauer results show a broad magnetic hyperfine field distribution in as-received samples and, consistent with XRD results, a sextet attributed to precipitates of FeNi3 (Bhf=29.5 T) for long annealing times.  相似文献   

8.
In this paper, we calculate the equilibrium phase diagram and the magnetic moment curve for the FexNi1−x system and simulate their Mössbauer spectra assuming a binomial distribution to reproduce the chemical disorder in these alloys. We also assume that the high-spin/low-spin transition for a central iron atom is governed by the number of nearest neighbours and next nearest neighbours of the iron atoms. The calculated equilibrium phase diagram and the magnetic moment curve are very close to that presented in the literature and the simulated Mössbauer spectra are in excellent agreement with that of their corresponding phases measured in our lab.  相似文献   

9.
Measurements of magnetization and 57Fe Mössbauer spectra have been made for Y(Fe1−xRux)2. The C15 type cubic structure is stabilized for xx 0.7. The C15 compounds is ferromagnetic with Tc200 K and its saturation moment decreases monotonically with increasing x, while the 57Fe hyperfine field decreases only slightly with x. From these results, it is deduced that the Ru atoms have an induced moment of ≈1μB in the range x 0.2. In the C14 type phase, no magnetic ordering develops even at 4.2 K.  相似文献   

10.
Within the framework of a random site-diluted Ising model with nearest-neighbor interactions, and using the Metropolis algorithm for equilibration and energy minimization, we have computed the ensemble and configurational averages for magnetization per site, magnetic susceptibility and specific heat of Fe0.9−qMn0.1Alq-disordered alloys with 0.1q0.55. In the model, atoms have been randomly distributed on a body-centered cubic lattice in order to simulate the disorder and structure as that obtained in arc-melted Fe0.9−qMn0.1Alq alloys treated at high temperatures during long periods of time and followed by fast quenching. Competitive interactions coming from Fe–Fe ferromagnetic bonds and Fe–Mn and Mn–Mn antiferromagnetic couplings, as well as the Al dilutor effect, have been taken into account in our study. Results allow us to conclude that, in agreement with previous Mössbauer data of the average hyperfine field, for which a comparison is also carried out, the Fe0.9−qMn0.1Alq-disordered alloys are well characterized by a critical concentration at room temperature at around 40 at% Al, for which the system undergoes a transition from a ferromagnetic state to a paramagnetic one. The finite size scaling analysis to obtain the critical Al concentration in the thermodynamic limit, as well as the critical exponents, is also presented and discussed.  相似文献   

11.
The hyperfine field and the magnetic anisotropy of a Fe layer as a function of thickness have been investigated in several Ni/57Fex/Ni(1 1 1) trilayers with relatively thick Ni layers by Mössbauer spectroscopy. For Fe layers with thickness below 16 Å, the Mössbauer spectra show always the presence of two ferromagnetic phases with high-spin state. In the range between 6 and 8 Å, also a ferromagnetic phase with low-spin state and a paramagnetic phase have been found. The evolution of the mean hyperfine field of the 57Fe nuclei is used to study the Fe growth. A structural FCCBCC phase transition is found to begin with an iron thickness of 8 Å. The easy direction of the magnetization is found out-of-plane for Fe interlayer with FCC structure, and perfectly in plane for Fe interlayer with BCC structure.  相似文献   

12.
Nd2Fe14B Φ phase crystallites were formed in Nd16.7Fe65.5B17.8 thin films prepared by RF sputtering with subsequent heat treatment. The 2 μm-thick films were deposited onto 0.1 mm Mo sheets at an average substrate temperature (Ts) of 365°C. The enhanced magnetic properties of the magnetically anisotropic thin films were investigated using different heating rates (hr) of 10°C, 20°C, 50°C and 100°C/min in an annealing experiment. Transformation from the amorphous phase to the crystalline phase is clearly manifested by the formation of fine crystallites embedded as a columnar matrix of Nd2Fe14B phase. High-resolution scanning electron microscope data of the cross-section of the annealed films show columnar stacking of Nd2Fe14B crystallites with sizes <500 nm. Transmission electron microscope observations revealed that the microstructure of these films having out-of-plane magnetization consists of uniformly distributed Φ phase with grain size around 400 nm together with small Nd rich particles. This grain size of Φ phase is comparable to the single domain particle diameter of Nd2Fe14B. Significant change in iHc, 4πMr and 4πMs with hr was confirmed. Annealing conditions with a heating rate of 50°C/min to an annealing temperature (Ta) of 650°C for 30 min was consequently found to give optimum properties for the NdFeB thin films. The resulting magnetic properties, considered to be the effect of varying hr were iHc= 1307–1357 kA/m, 4πMr=0.78–1.06 T and 4πMs=0.81–1.07 T.  相似文献   

13.
Chemically prepared (CoxNi1−x)1−yBy (x=0.5, 0.75, 1; y≈0.4) amorphous fine particles were characterized by X-ray diffraction, DTA and TGA, and in situ magnetic measurement as a function of annealing temperature in an inert atmosphere. Magnetic measurement performed in as-prepared and 150°C annealed samples shows an increase of the saturation magnetization and magnetic moment after thermal treatment. Room temperature magnetization increases by factors of 3.5, 1.8, and 1.5, for x=0.5, 0.75, and 1, respectively. These measurements may indicate a local re-ordering of the amorphous phase at temperatures much lower than the full crystallization temperature.  相似文献   

14.
The magnetic properties of nanocomposite melt-spun magnets with composition Sm16−xCo68+xB16 (x=0–10, 2 at% interval) and Sm8Co92−yBy (y=10–18, 2 at% interval) have been studied systematically. Several ribbons were fabricated with a wheel speed of 50 m/s, followed by annealing in the temperature range of 700–800°C for 2.5–40 min. XRD results and magnetization versus temperature curves showed that almost all of the samples were composed of the tetragonal Sm2Co14B and rhombohedral SmCo12B6 phases which are not magnetically hard at room temperature. However, a relatively high coercivity in the range of 3.5–5.5 kOe has been obtained in these samples. The highest coercivity of 5.5 kOe and a very promising β value of −0.28%/°C were obtained in Sm8Co74B18 ribbons annealed at 750°C for 5 min. The high coercivities are attributed to the small grain size of the 2 : 14 : 1 phase, in which the large surface areas enhance its effective anisotropy, and make it uniaxial type.  相似文献   

15.
Magnetic interactions and effects of dilution with nonmagnetic Y on the magnetic properties of crystalline and amorphous alloys GdxY50−xAg50 (10 ≤ x ≤ 50) have been investigated by measurements of bulk magnetization and susceptibility and by Mössbauer spectroscopy with 155Gd. The crystalline alloys order antiferromagnetically for all Gd concentrations with a noncollinear arrangement of Gd moments induced by negative biquadratic exchange interactions. In amorphous alloys, ferromagnetic order is found for large Gd concentrations (x ≥ 40). Below the critical concentration xcr, in the range 30<xcr<40, properties typical for magnetic cluster glasses are observed. Magnetic hyperfine fields Bhf at 155Gd nuclei vary with x in opposite directions in amorphous and in crystalline alloys. In crystalline alloys, the variation is due to a positive transferred hyperfine field. In amorphous alloys, a reduction of |Bhf| with decreasing Gd concentration is caused by a reduction of the frozen Gd moments in the cluster glass phase.  相似文献   

16.
In the present work we study the magnetostriction of Fe91Sn9 and Fe80Sn20 polycrystalline samples produced by arc melting and heat treated at temperatures of 1153 K for 6 h and 1023 K for 24 h, looking for high values of magnetostriction as in Fe–Ga alloys. Magnetostriction, as well as saturation magnetization measurements, was carried out at temperatures close to 203 K in the magnetic field interval 0 to 1.5 T. Results of magnetostriction on sample Fe91Sn9, which has almost pure -phase, show magnitude and behavior similar to pure Fe. The two additional Fe80Sn20 samples have a combination of -phase plus either Fe5Sn3 or Fe3Sn2 and show a peculiar behavior of the magnetostriction. For μ0H<0.3 T the magnetostriction grows from zero to saturation of the -phase. Following, for μ0H>0.3 T, the magnetostriction starts again to grow linearly with the field, but saturation was not observed up to 5 T. This behavior was attributed to the presence of Fe5Sn3 or Fe3Sn2 phases in these samples that are also ferromagnetic as the -phase is.  相似文献   

17.
The Mössbauer spectra of Invar type Fe65(Ni1-xMnx)35 alloys (0 x 0.3) were analyzed to yield hyperfine field distribution (P(H)) curve. The P(H) curves of the alloy with x = 0, that is the “classical” Invar alloy, at 4.2 K is character ized by a relatively sharp main peak at 350 kOe and a weak low field component around 50 kOe. With increasing x, the low field component grows and the high field main peak spreads toward a low field. By raising temperature, the main peak exhibits a remarkable broadening as well as a decrease in the average internal field and a growth of the low field component has not been detected. On the basis of these observations, models of the Invar alloy so far proposed are discussed.  相似文献   

18.
In very rare circumstances, X-ray photoemission spectra of copper in spinel oxides exhibit a “negative binding energy shift”. The origin of such an anomalous XPS chemical shift was investigated. A metastable Ni0.48Co0.24Cu0.6+xMn1.68−xO4 (0 < x < 0.6) spinel was fabricated at 600 °C using a low-temperature solution technique. The binding energy of the 2p3/2 level of copper (930.8 eV) is found 1.9 eV lower than that of Cu0 (932.7 eV). XPS and EXAFS studies revealed that the post-thermal annealing between 600 and 800 °C undergoes an irreversible cubic-to-tetragonal phase transformation through oxidation–reduction reaction Cu1+ + Mn4+  Cu2+ + Mn3+, and only tetrahedral Cu1+ species in the cubic spinel shows this anomalous chemical shift. The negative shift of the core levels was correlated to an equal shift of the Cu 3d valence band levels. XPS valence bands from the samples annealed at different temperatures were compared to DOS calculations. The DOS computations were performed with FEFF-8.1 code using experimental crystal parameters established by the EXAFS analysis. It was found that the tetrahedral Cu1+ in the 600 °C annealed sample exhibits localization of the 3d orbitals showing behavior characteristic to zinc. The completely filled and isolated 3d electron shell appears as a false valence band edge in the XPS spectrum. The position of the Cu 3d, and other core levels, is established by oxygen pinning the Cu valence band levels and by the fixed value of the p–d gap characteristic to the tetrahedral copper environment in this spinel.  相似文献   

19.
The nucleation mechanism to predict coercivity values in melt-spun exchange-coupled (Nd1−xPrx)yFe94−yB6 alloys for various Nd:Pr ratios x, and Fe:RE ratios y, was tested using the dependence of the anisotropy constant K1 on Pr content x for the minimum nucleation field HNmin in the modified Brown's equation. Very good agreement was found between experimental data and theoretical values, confirming the predominance of the nucleation of reverse domains over the wall pinning process in the coercivity mechanism of melt spun REFeB alloys.  相似文献   

20.
The magnetic and structural properties of Fe1003−xCrx ultrafine particles with x = 5–20 have been studied as a function of particle size. Particles with a size in the range of 80–360 Å were prepared by gas evaporation under argon atmosphere. The particles with smaller diameter had a high coercivity at low temperatures and showed a stronger temperature dependence of coercivity. The x = 20 particles with a size 80 Å had a coercivity about 2100 Oe at 10 K with a superparamagnetic blocking temperature about 150 K. Mössbauer spectra showed the presence of Fe-Cr, -Fe and Fe-oxide components in the bigger particles, and Fe-Cr and Fe-oxides in the smaller particles. The coercivity at low temperatures increased with decreasing particle size and this was attributed to the higher percentage of Fe-oxide on the surface of the smaller particles. This interpretation was further supported by the temperature dependence of coercivity of Fe–Cr particles sandwiched between two Ag films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号