首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
Metastable equilibrium solubilities and properties such as densities, conductivity, pH, refractive index, and viscosity of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram was plotted. In the phase diagram, there are three invariant points, seven univariant curves, five fields of crystallization: Li2SO4 · H2O, K2SO4, Li2B4O7 · 3H2O, K2B4O7 · 4H2O, and K2SO4 · Li2SO4. The double salt K2SO4 · Li2SO4 was found in the quaternary system metastable equilibria. Lithium sulfate (Li2SO4) has the highest concentration and strong salting-out effects on other salts.Also, the relationship diagram between the properties and the ion concentration of solution was constructed. It can be seen from the relationship diagram that the equilibrium solution density values, viscosity values, and refractive index values are increased apparently with the rise of sulfate ion concentration, reaching the maximum values at eutonic point F3. Electrical conductivity values and pH values, however, fall down with the rise of ion concentration on the whole.  相似文献   

2.
The solubility and the density in the aqueous ternary system (Li2SO4 + MgSO4 + H2O) at T = 308.15 K were determined by the isothermal evaporation. Our experimental results permitted the construction of the phase diagram and the plot of density against composition. It was found that there is one eutectic point for (Li2SO4 · H2O + MgSO4 · 7H2O), two univariant curves, and two crystallization regions corresponding to lithium sulphate monohydrate (Li2SO4 · H2O) and epsomite (MgSO4 · 7H2O). The system belongs to a simple co-saturated type, and neither double salts nor solid solution was found. Based on the Pitzer ion-interaction model and its extended HW models of aqueous electrolyte solution, the solubility of the ternary system at T = 308.15 K has been calculated. The predicted solubility agrees well with the experimental values.  相似文献   

3.
采用等温蒸发平衡法研究了四元体系K2B4O7-Na2B4O7-Li2B4O7-H2O15℃时的介稳相平衡及平衡液相的物化性质(密度,粘度,电导率,折光率,pH)。根据实验数据绘制了相图,相图中有一个共饱点E,三条单变度曲线E3F,E2F,E1F;三个平衡固相分别为:K2B4O7•4H2O,Na2B4O7•10H2O和Li2B2O4•16H2O;硼酸钾具有最大溶解度,硼酸钠具有最小溶解度。同时,根据试验数据绘制了组成-物化性质关系图,从图可见溶液的密度,粘度和折光率均随着溶液浓度的增大而逐渐增大,在共饱和点F处达到最大值,而溶液的pH值和电导率却随着溶液浓度的增大呈总体下降的趋势。  相似文献   

4.
A complete, critical evaluation of all phase diagrams and thermodynamic data was performed for all condensed phases of the (NaCl + Na2SO4 + Na2CO3 + KCl + K2SO4 + K2CO3) system, and optimized parameters for the thermodynamic solution models were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range order, where the cations (Na+ and K+) were assumed to mix on a cationic sublattice, while anions (CO32-,SO42-,andCl-) were assumed to mix on an anionic sublattice. The thermodynamic properties of the solid solutions of (Na,K)2(SO4,CO3) were modelled using the Compound Energy Formalism, and (Na,K)Cl was modelled using a substitutional model in previous studies. Phase transitions in the common-cation ternary systems (NaCl + Na2SO4 + Na2CO3) and (KCl + K2SO4 + K2CO3) were studied experimentally using d.s.c./t.g.a. The experimental results were used as input for evaluating the phase equilibrium in the common-cation ternary systems. The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature are reproduced within experimental error limits.  相似文献   

5.
A critical evaluation of all phase diagram and thermodynamic data were performed for the solid and liquid phases of the (Na2CO3 + Na2SO4 + Na2S + K2CO3 + K2SO4 + K2S) system and optimized model parameters were obtained. The Modified Quasichemical Model in the Quadruplet Approximation was used for modelling the liquid phase. The model evaluates first- and second-nearest-neighbour short-range ordering, where the cations (Na+ and K+) are assumed to mix on a cationic sublattice, while anions (CO32-,SO42-,andS2-) are assumed to mix on an anionic sublattice. The Compound Energy Formalism was used for modelling the solid solutions of (Na, K)2(CO3, SO4, S). The models can be used to predict the thermodynamic properties and phase equilibria in multicomponent heterogeneous systems. The experimental data from the literature were reproduced within experimental error limits.  相似文献   

6.
This paper describes a chemical model that calculates (solid + liquid) equilibria in the {m1FeCl2 + m2FeCl3}(aq), {m1FeSO4 + m2Fe2(SO4)3}(aq), {m1NaCl + m2FeCl3}(aq), {m1Na2SO4 + m2FeSO4}(aq), {m1NaCl + m2FeCl2}(aq), {m1KCl + m2FeCl3}(aq), {m1K2SO4 + m2Fe2(SO4)3}(aq), {m1KCl + m2FeCl2}(aq), {m1K2SO4 + m2FeSO4}(aq), and {m1MgCl2 + m2FeCl2}(aq) systems, where m denotes molality at T=298.15 K. The Pitzer ion-interaction model has been used for thermodynamic analysis of the experimental activity data in binary FeCl2(aq) and FeCl3(aq) solutions, and ternary solubility data, presented in the literature. The thermodynamic functions needed (binary and ternary parameters of ionic interaction, thermodynamic solubility products) have been calculated and the theoretical solubility isotherms have been plotted. The mixed solution model parameters {θ(MN) and ψ(MNX)} have been chosen on the basis of the compositions of saturated ternary solutions and data on the pure water solubility of the K2SO4 · FeSO4 · 6H2O double salt. The standard chemical potentials of four ferrous {FeCl2 · 4H2O, Na2SO4 · FeSO4 · 4H2O, K2SO4 · FeSO4 · 6H2O, and MgCl2 · FeCl2 · 8H2O} and three ferric {FeCl3 · 6H2O, 2KCl · FeCl3 · H2O, and 2K2SO4 · Fe2(SO4)3 · 14H2O} solid phases have been determined. Comparison of solubility predictions with experimental data not used in model parameterization is given. The component activities of the saturated {m1MgSO4 + m2FeSO4}(aq) and in the mixed crystalline phase were determined and the change of the molar Gibbs free energy of mixing ΔmixGm(s) of crystals was determined as a function of the solid phase composition. It is established that at T=298.15 K the mixed (Mg,Fe)SO4 · 7H2O and (Fe,Mg)SO4 · 7H2O crystals show small positive deviations from the ideal mixed crystals. Limitations of the {Fe(II) + Fe(III)} model due to data insufficiencies are discussed.  相似文献   

7.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases of the (NaNO3 + KNO3 + Na2SO4 + K2SO4) ternary reciprocal system, and optimised model parameters have been found. The model parameters obtained for the four binary common-ion subsystems (i.e. (NaNO3 + Na2SO4), (KNO3 + K2SO4), (NaNO3 + KNO3) and (Na2SO4 + K2SO4)) are used to predict thermodynamic properties and phase equilibria for the entire system. The Modified Quasichemical Model in the Quadruplet Approximation for short-range ordering was used for the molten salt phase, and the Compound Energy Formalism was used for the various solid solutions.  相似文献   

8.
Standard values of Gibbs free energy, entropy, and enthalpy of Na2Ti6O13 and Na2Ti3O7 were determined by evaluating emf-measurements of thermodynamically defined solid state electrochemical cells based on a Na–β″-alumina electrolyte. The central part of the anodic half cell consisted of Na2CO3, while two appropriate coexisting phases of the ternary system Na–Ti–O are used as cathodic materials. The cell was placed in an atmosphere containing CO2 and O2. By combining the results of emf-measurements in the temperature range of 573⩽T/K⩽1023 and of adiabatic calorimetric measurements of the heat capacities in the low-temperature region 15⩽T/K⩽300, the thermodynamic data were determined for a wide temperature range of 15⩽T/K⩽1100. The standard molar enthalpy of formation and standard molar entropy at T=298.15 K as determined by emf-measurements are ΔfHm0=(−6277.9±6.5) kJ · mol−1 and Sm0=(404.6±5.3) J · mol−1 · K−1 for Na2Ti6O13 and ΔfHm0=(−3459.2±3.8) kJ · mol−1 and Sm0=(227.8±3.7) J · mol−1 · K−1 for Na2Ti3O7. The standard molar entropy at T=298.15 K obtained from low-temperature calorimetry is Sm0=399.7 J · mol−1 · K−1 and Sm0=229.4 J · mol−1 · K−1 for Na2Ti6O13 and Na2Ti3O7, respectively. The phase widths with respect to Na2O content were studied by using a Na2O-titration technique.  相似文献   

9.
A calorimetric and thermodynamic investigation of two alkali-metal uranyl molybdates with general composition A2[(UO2)2(MoO4)O2], where A = K and Rb, was performed. Both phases were synthesized by solid-state sintering of a mixture of potassium or rubidium nitrate, molybdenum (VI) oxide and gamma-uranium (VI) oxide at high temperatures. The synthetic products were characterised by X-ray powder diffraction and X-ray fluorescence methods. The enthalpy of formation of K2[(UO2)2(MoO4)O2] was determined using HF-solution calorimetry giving ΔfH° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = −(4018 ± 8) kJ · mol−1. The low-temperature heat capacity, Ср°, was measured using adiabatic calorimetry from T = (7 to 335) K for K2[(UO2)2(MoO4)O2] and from T = (7 to 326) K for Rb2[(UO2)2(MoO4)O2]. Using these Ср° values, the third law entropy at T = 298.15 K, S°, is calculated as (374 ± 1) J · K−1 · mol−1 for K2[(UO2)2(MoO4)O2] and (390 ± 1) J · K−1 · mol−1 for Rb2[(UO2)2(MoO4)O2]. These new experimental results, together with literature data, are used to calculate the Gibbs energy of formation, ΔfG°, for both phases giving: ΔfG° (T = 298 K, K2[(UO2)2(MoO4)O2], cr) = (−3747 ± 8) kJ · mol−1 and ΔfG° (T = 298 K, Rb2[(UO2)2(MoO4)], cr) = −3736 ± 5 kJ · mol−1. Smoothed Ср°(Т) values between 0 K and 320 K are presented, along with values for S° and the functions [H°(T)  H°(0)] and [G°(T)  H°(0)], for both phases. The stability behaviour of various solid phases and solution complexes in the (K2MoO4 + UO3 + H2O) system with and without CO2 at T = 298 K was investigated by thermodynamic model calculations using the Gibbs energy minimisation approach.  相似文献   

10.
Solubility isotherms of the ternary system (LiCl + CaCl2 + H2O) were elaborately determined at T = (283.15 and 323.15) K. Several thermodynamic models were applied to represent the thermodynamic properties of this system. By comparing the predicted and experimental water activities in the ternary system, an empirical modified BET model was selected to represent the thermodynamic properties of this system. The solubility data determined in this work at T = (283.15 and 323.15) K, as well as those from the literature at other temperatures, were used for the model parameterization. A complete phase diagram of the ternary system was predicted over the temperature range from (273.15 to 323.15) K. Subsequently, the Gibbs free energy of formation of the solid phases CaCl2 · 4 H2O(s), CaCl2 · 2 H2O(s), LiCl · 2H2O(s), and LiCl · CaCl2 · 5H2O(s) was estimated and compared with the literature data.  相似文献   

11.
Thermodynamic properties of B2O3 in the (Al2O3 + B2O3) binary system were investigated by vapor pressure measurement of B2O3 in equilibrium with (Al2O3 + B2O3) compounds or melts using double Knudsen cell mass spectrometry. The Gibbs free energy change of formation of Al18B4O33 (9Al2O3·2B2O3) was estimated from the vapor pressure in equilibrium with a mixture of Al18B4O33 and Al2O3 at 1573 K to 1673 K. And activities of B2O3 in the two-phase region Al18B4O33 and B2O3-rich liquid, and (Al2O3 + B2O3) melts were obtained at 1373 K to 1423 K by vapor pressure measurements.  相似文献   

12.
13.
The bromide minerals solubility in the mixed system (m1NaBr + m2MgBr2)(aq) have been investigated at T = 323.15 K by the physico-chemical analysis method. The equilibrium crystallization of NaBr·2H2O(cr), NaBr(cr), and MgBr2·6H2O(cr) has been established. The solubility-measurements results obtained have been combined with all other experimental equilibrium solubility data available in literature at T = (273.15 and 298.15) K to construct a chemical model that calculates (solid + liquid) equilibria in the mixed system (m1NaBr + m2MgBr2)(aq). The solubility modeling approach based on fundamental Pitzer specific interaction equations is employed. The model gives a very good agreement with bromide salts equilibrium solubility data. Temperature extrapolation of the mixed system model provides reasonable mineral solubility at high temperature (up to 100 °C). This model expands the previously published temperature variable sodium–potassium–bromide and potassium–magnesium–bromide models by evaluating sodium–magnesium mixing parameters. The resulting model for quaternary system (Na + K + Mg + Br + H2O) is validated by comparing solubility predictions with those given in literature, and not used in the parameterization process. Limitations of the mixed solution models due to data insufficiencies at high temperature are discussed.  相似文献   

14.
This work reports the results of a thermodynamic investigation of the ternary mixed-electrolyte system (CsCl + CaCl2 + H2O). The activity coefficients of this mixed aqueous electrolyte system have been studied with the electromotive force measurement (EMF) of the cell: Cs ion-selective electrode (ISE)|CsCl(mA), CaCl2(mB), H2O|Ag/AgCl at T = 298.15 K and over total ionic strengths from (0.01 to 1.50) mol · kg?1 for different ionic strength fractions yB of CaCl2 with yB = (0, 0.2, 0.4, 0.6, and 0.8). The cesium ion-selective electrode (Cs-ISE) and the Ag/AgCl electrode used in this work were made in our laboratory and had a good Nernst response. The experimental results obey the Harned rule, and the Pitzer model can be used to describe this ternary system satisfactorily. The osmotic coefficients, excess Gibbs free energies and activities of water of the mixtures were also calculated.  相似文献   

15.
The solubility of the binary system (LiNO3 + H2O) from T = 273.15 K to T = 333.15 K and solubility isotherms of the ternary system (LiCl + LiNO3 + H2O) were elaborately measured at T = 273.15 K and T = 323.15 K. These solubility data, as well as water activities in the binary systems from the literature, were treated by an empirically modified BET model. The isotherms of the ternary system (LiCl + LiNO3 + H2O) were reproduced and a complete phase diagram of the ternary system in the temperature range from 273.15 K to 323.15 K predicted. It is shown that the solubility data for the binary system (LiNO3 + H2O) measured in this work are slightly different from the literature data. Simulated results showed that the saturated salt solution of (2.8LiCl + LiNO3) is in equilibrium with the stable solid phase LiNO3(s) over the temperature range from 283.15 K to 323.15 K, other than the solid phases LiNO3 · 3H2O(s) and LiClH2O(s) as reported by Iyoki et al. [S. Iwasaki, Y. Kuriyama. T. Uemura, J. Chem. Eng. Data 38 (1993) 396–398].  相似文献   

16.
The thermodynamic properties ofZn5(OH)6(CO3)2 , hydrozincite, have been determined by performing solubility and d.s.c. measurements. The solubility constant in aqueous NaClO4media has been measured at temperatures ranging from 288.15 K to 338.15 K at constant ionic strength (I =  1.00 mol · kg  1). Additionally, the dependence of the solubility constant on the ionic strength has been investigated up to I =  3.00 mol · kg  1NaClO4at T =  298.15 K. The standard molar heat capacity Cp, mofunction fromT =  318.15 K to T =  418.15 K, as well as the heat of decomposition of hydrozincite, have been obtained from d.s.c. measurements. All experimental results have been simultaneously evaluated by means of the optimization routine of ChemSage yielding an internally consistent set of thermodynamic data (T =  298.15 K): solubility constant log * Kps 00 =  (9.0  ±  0.1), standard molar Gibbs energy of formationΔfGmo {Zn5(OH)6(CO3)2 }  =  (  3164.6  ±  3.0)kJ · mol  1, standard molar enthalpy of formation ΔfHmo{Zn5(OH)6(CO3)2 }  =  (  3584  ±  15)kJ · mol  1, standard molar entropy Smo{Zn5(OH)6(CO3)2 }  =  (436  ±  50)J · mol  1· K  1and Cp,mo / (J · mol  1· K  1)  =  (119  ±  11)  +  (0.834  ±  0.033)T / K. A three-dimensional predominance diagram is introduced which allows a comprehensive thermodynamic interpretation of phase relations in(Zn2 +  +  H2O  +  CO2) . The axes of this phase diagram correspond to the potential quantities: temperature, partial pressure of carbon dioxide and pH of the aqueous solution. Moreover, it is shown how the stoichiometric composition{n(CO3) / n(Zn)} of the solid compoundsZnCO3 and Zn5(OH)6(CO3)2can be checked by thermodynamically analysing the measured solubility data.  相似文献   

17.
《Fluid Phase Equilibria》2005,238(2):180-185
Data on the solubility of manganese sulphate monohydrate in water, and in aqueous alcohols is essential for salting-out crystallization studies. The solubilities for the quaternary system MnSO4·H2O + MgSO4·7H2O + H2O + MeOH solution were determined in the temperature ranges 293.2–308.2 K over the mole fraction methanol ranges of 0.00–0.16. The solubility data were used for modelling with the modified extended electrolyte non-random two-liquid (NRTL) equation. The present extension uses ion-specific parameters instead of the electrolyte-specific NRTL binary interaction parameters. This approach has feasibility for many electrolytes and mixed aqueous solution systems principally. The model was found to correlate the solubility data satisfactory.  相似文献   

18.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

19.
《Solid State Sciences》2007,9(7):644-652
Na2Cu(PO2NH)4·7H2O and KxNa2−xCu(PO2NH)4·7H2O (x  0.5) were synthesized by gel crystallization in sodium silicate gels. The crystal structures were solved by single-crystal X-ray methods and found to be isotypic (Pnma, Z = 4; Na2Cu(PO2NH)4·7H2O: a = 627.5(2) pm, b = 1456.0(3) pm, c = 1900.5(4) pm, R1 = 0.0352; K0.47Na1.53Cu(PO2NH)4·7H2O: a = 632.2(2) pm, b = 1460.0(3) pm, c = 1936.4(4) pm, R1 = 0.0345). The P4N4 rings of the tetrametaphosphimate anion exhibit a distorted chair-2 conformation with admixtures of saddle and crown conformation. The M+ ions are six- and sevenfold coordinated by oxygen atoms, the Cu2+ ions are fivefold coordinated, respectively. The MO7 and the CuO5 units form pairs of face-sharing polyhedra, which are connected by common corners forming chains and are further interconnected by tetrametaphosphimate anions, forming a three-dimensional network structure with channels along [100] and [010]. The MO6 units form chains of face-sharing polyhedra, which are situated in the channels along [100]. Extended hydrogen bonding reinforces the three-dimensional framework structure of the compounds. 23Na-MAS NMR experiments were conducted to verify the K/Na distribution on the M sites derived from the X-ray crystal structure refinement.  相似文献   

20.
《Fluid Phase Equilibria》2005,233(2):190-193
Isothermal phase equilibrium (pressure–composition in the gas phase) for the ternary system of H2 + CO2 + H2O has been investigated in the presence of gas hydrate phase. Three-phase equilibrium pressure increases with the H2 composition of gas phase. The Raman spectra suggest that H2 is not enclathrated in the hydrate-cages and behaves only like the diluent gas toward the formation of CO2 hydrate. This fact is also supported by the thermodynamic analysis using Soave–Redlich–Kwong equation of state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号