首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Density functional theory calculations have been performed for the dimethylgallyl complexes of iron, ruthenium, and osmium [(η(5)-C(5)H(5))(L)(2)M(GaMe(2)] (M = Fe, Ru, Os; L = CO, PMe(3)) at the DFT/BP86/TZ2P/ZORA level of theory. The calculated geometry of the iron complex [(η(5)-C(5)H(5))(CO)(2)Fe(GaMe(2))] is in excellent agreement with structurally characterized complex [(η(5)-C(5)H(5))(CO)(2)Fe(Ga(t)Bu(2))]. The Pauling bond order of the optimized structures shows that the M-Ga bonds in these complexes are nearly M-Ga single bond. Upon going from M = Fe to M = Os, the calculated M-Ga bond distance increases, while on substitution of the CO ligand by PMe(3), the calculated M-Ga bond distances decrease. The π-bonding component of the total orbital contribution is significantly smaller than that of σ-bonding. Thus, in these complexes the GaX(2) ligand behaves predominantly as a σ-donor. The contributions of the electrostatic interaction terms ΔE(elstat) are significantly smaller in all gallyl complexes than the covalent bonding ΔE(orb) term. The absolute values of the ΔE(Pauli), ΔE(int), and ΔE(elstat) contributions to the M-Ga bonds increases in both sets of complexes via the order Fe < Ru < Os. The Ga-C(CO) and Ga-P bond distances are smaller than the sum of van der Waal radii and, thus, suggest the presence of weak intermolecular Ga-C(CO) and Ga-P interactions.  相似文献   

2.
Treatment of the electronically unsaturated 4-methylquinoline triosmium cluster $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_3\hbox{-}\upeta^{2}\hbox{-}\hbox{C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upmu\hbox{-H})]$ (1) with tetramethylthiourea in refluxing cyclohexane at 81°C gave $[\hbox{Os}_{3}\hbox{(CO)}_{8}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5} \hbox{(4-Me)N})(\upeta^2\hbox{-SC}(\hbox{NMe}_2\hbox{NCH}_2\hbox{Me})(\upmu \hbox{-H})_2]$ (2) and $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N})(\upeta^1\hbox{-SC}(\hbox{NMe}_2)_2)(\upmu\hbox{-H})]$ (3). In contrast, a similar reaction of the corresponding quinoline compound $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu_{3}\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upmu\hbox{-H})]$ (4) with tetramethylthiourea afforded $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu\hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N})(\upeta^{1}\hbox{-SC(NMe}_{2})_{2})(\upmu\hbox{-H)}]$ (5) as the only product. Compound 2 contains a cyclometallated tetramethylthiourea ligand which is chelating at the rear osmium atom and a quinolyl ligand coordinated to the Os3 triangle via the nitrogen lone pair and the C(8) atom of the carbocyclic ring. In 3 and 5, the tetramethylthiourea ligand is coordinated at an equatorial site of the osmium atom, which is also bound to the carbon atom of the quinolyl ligand. Compounds 3 and 5 react with PPh3 at room temperature to give the previously reported phosphine substituted products $[\hbox{Os}_{3}\hbox{(CO)}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{5}\hbox{(4-Me)N)(PPh}_{3})(\upmu\hbox{-H)}]$ (6) and $[\hbox{Os}_{3}\hbox{(CO}_{9}(\upmu \hbox{-}\upeta^{2}\hbox{-C}_{9}\hbox{H}_{6}\hbox{N)(PPh}_{3})(\upmu\hbox{-H)}]$ (7) by the displacement of the tetramethylthiourea ligand.  相似文献   

3.
Wang  Mei  Miguel  Daniel  Riera  Víctor  Bois  Claudette  Jeannin  Yves 《Transition Metal Chemistry》2001,26(4-5):566-569
A novel dimolybdenum complex [(3-C3H5)(CO)2Mo(-S2CPCy3)Mo(3-CH2CMeCH2)(CO)2], obtained by reacting the [(CO)2(3-C3H5)Mo(-S2CPCy3)Mo(CO)3] anion with an excess of ClCH2CMe=CH2, has been characterized by i.r., 31P{1H}, 1H- and 13C-n.m.r. spectroscopy and by elemental analysis. The crystal structure of the complex, determined by X-ray diffraction, shows a definite preference for the central carbon of the S2CPCy3 bridge to bind to the Mo(2) atom coordinated by 3-2-methylallyl, rather than the Mo(1) atom attached to unsubstituted 3-allyl ligand.  相似文献   

4.
Abstract  Reaction of [(η5-C5Me5Mo)2B5H9], 1 with 5-fold excess of n-BuLi at −70 °C followed by excess of RI (R = n-Bu or Ph) at room temperature yielded B-R inserted metallaboranes [(η5-C5Me5Mo)2B5H8R] (2: R = n-Bu, 5: R = Ph), [(η5-C5Me5Mo)2B5H7R2] (3, 4: R = n-Bu; 6, 7: R = Ph). Isolated yields of mono-alkyl/arylated species are better than di-alkyl/arylated ones. All the new cluster compounds have been characterized by IR, 1H, 11B, 13C NMR and mass spectroscopy as simple substitution derivatives of [(η5-C5Me5Mo)2B5H9] and the structural types of one of these species, 2 was established by X-ray crystallographic analysis. Graphical Abstract  Reaction of [(η5-C5Me5Mo)2B5H9], with 5-fold excess of n-BuLi at −70 °C followed by excess of RI (R = n-Bu or Ph) at room temperature yielded B-R inserted metallaboranes [(η5-C5Me5Mo)2B5H9-nRn] (When R = n-Bu, n = 2, 1; R = Ph, n = 2, 1).   相似文献   

5.
The reaction of [(η5-C9H7)Ru(η2-dppe)Cl] (1) with monodentate nitriles, (L) in the presence of NH4PF6 afforded the complexes [(η5-C9H7)Ru(η2-dppe)(L)]PF6, with L?=?CH3CN (2a), CH3CH=CHCN (2b), NCC6H4CN (2c), C6H5CH2CN (2d), respectively. However, reaction of 1 with NH4PF6 in methanol yielded an amine complex of the type [(η5-C9H7) Ru(η2-dppe)(NH3)]PF6 (3a). The complexes were fully characterized by spectroscopy and analytical data. The molecular structures of the complexes [(η5-C9H7)Ru(η2-dppe) (CH3CN)]PF6 (2a) and [(η5-C9H7)Ru(η2-dppe)(NH3)]PF6 (3a) have been determined by single crystal X-ray analyses.  相似文献   

6.
Thermolysis of [Ru3(CO)12] in cyclohexene for 24 h affords the complexes [Ru(CO)34-C6H8)] (1), [Ru3H2(CO)92121-C6H8)] (2), [Ru4(CO)124-C6H8)] (3) [Ru4(CO)94-C6H8)(η6-C6H6)] (4a and 4b, two isomers) and [Ru5(CO)1242-C6H8)(η4-C6H8)] (5), where 1, 3, 4a and 4b have been previously characterised as products of the thermolysis of [Ru3(CO)12] with cyclohexa-1,3-diene. The molecular structures of the new clusters 2 and 5 were determined by single-crystal X-ray crystallography, showing that two conformational polymorphs of 5 exist in the solid state, differing in the orientation of the cyclohexa-1,3-diene ligand on a ruthenium vertex.  相似文献   

7.
Abstract

Syntheses and structures of penta- and hexaphosphorus analogues of ferrocene have been described recently1. Unlike their simple ferrocene analogues, these complexes have further ligating potential towards other transition metal centres by virtue of the availability of the ring phosphorus lone-pair electrons that are not involved in the η5-coordination. We now describe the first examples of coordination compounds of the triphospha-ferrocene [Fe(η5-C5Me5) (η5-C2 tBu2P3]. In the ruthenium complex [Fe(η5-C5Me5)(η5-C2 tBu2P3) Ru3(CO)9] 2 two adjacent phosphorus atoms of the η5-C2 tBu2P3 ring are interlinked by a ruthenium carbonyl cluster in which all three ruthenium atoms interact with the phosphorus atoms. The tetrametallic nickel complex [Fe(η5-C5Me5)(η5-C2 tBu2P3)Ni(CO)2]2 3 represents the first example of intermolecular interlinkage of two phospha-ferrocene systems by two metal centres.  相似文献   

8.
《Polyhedron》1999,18(20):2679-2685
The trinuclear oxo-capped cluster cation [(η6-C6H6)(η6-C6Me6)2Ru32-H)33-O)]+ (2) was synthesised by reacting [(η6-C6Me6)Ru(H2O)3]2+ with [(η6-C6Me6)2Ru22-H)3]+ in aqueous solution. The single-crystal X-ray structure analysis of the tetrafluoroborate salt shows the cation to contain a H2O molecule hydrogen-bonded to the μ3-oxo ligand. Acidification experiments show two protonation steps occuring at this H2O molecule and the oxo cap of the triruthenium cluster. The cluster cation 2 catalyses the hydrogenation of aromatic compounds in aqueous solution under biphasic conditions.  相似文献   

9.
Antimony is reduced when [SbPh2BrO]2 is treated with Na[Mo(CO)3(η5-C5H5)] to produce [μ-SbPh2]2[Mo(CO)2(η5-C5H5)]2. A structure determination shows diphenylstibido groups bridging between two Mo(CO)2(η5-C5H5) moieties giving a central ‘butterfly’ shaped Sb2Mo2 ring. The cyclopentadiene rings are trans to each other and Mo–Sb and Sb–Sb separations are both short. An iron analogue could not be obtained from [SbPh2BrO]2 and Na[Fe(CO)2(η5-C5H5)] but a mixture of SbPh[Fe(CO)2(η5-C5H5)]2 and SbPh2[Fe(CO)2(η5-C5H5)] was obtained using SbPh2Cl. An X-ray structure for SbPh[Fe(CO)2(η5-C5H5)]2 shows an open stibinidine structure.  相似文献   

10.
The electron distributions and bonding in Ru3(CO)9( 3- 2, 2, 2-C6H6) and Ru3(CO)9( 3- 2, 2, 2-C60) are examined via electronic structure calculations in order to compare the nature of ligation of benzene and buckminsterfullerene to the common Ru3(CO)9 inorganic cluster. A fragment orbital approach, which is aided by the relatively high symmetry that these molecules possess, reveals important features of the electronic structures of these two systems. Reported crystal structures show that both benzene and C60 are geometrically distorted when bound to the metal cluster fragment, and our ab initio calculations indicate that the energies of these distortions are similar. The experimental Ru–Cfullerene bond lengths are shorter than the corresponding Ru–Cbenzene distances and the Ru–Ru bond lengths are longer in the fullerene-bound cluster than for the benzene-ligated cluster. Also, the carbonyl stretching frequencies are slightly higher for Ru3(CO)9( 3- 2, 2, 2-C60) than for Ru3(CO)9( 3- 2, 2, 2-C6H6). As a whole, these observations suggest that electron density is being pulled away from the metal centers and CO ligands to form stronger Ru–Cfullerene than Ru–Cbenzene bonds. Fenske-Hall molecular orbital calculations show that an important interaction is donation of electron density in the metal–metal bonds to empty orbitals of C60 and C6H6. Bonds to the metal cluster that result from this interaction are the second highest occupied orbitals of both systems. A larger amount of density is donated to C60 than to C6H6, thus accounting for the longer metal–metal bonds in the fullerene-bound cluster. The principal metal–arene bonding modes are the same in both systems, but the more band-like electronic structure of the fullerene (i.e., the greater number density of donor and acceptor orbitals in a given energy region) as compared to C6H6 permits a greater degree of electron flow and stronger bonding between the Ru3(CO)9 and C60 fragments. Of significance to the reduction chemistry of M3(CO)9( 3- 2, 2, 2-C60) molecules, the HOMO is largely localized on the metal–carbonyl fragment and the LUMO is largely localized on the C60 portion of the molecule. The localized C60 character of the LUMO is consistent with the similarity of the first two reductions of this class of molecules to the first two reductions of free C60. The set of orbitals above the LUMO shows partial delocalization (in an antibonding sense) to the metal fragment, thus accounting for the relative ease of the third reduction of this class of molecules compared to the third reduction of free C60.  相似文献   

11.
The absolute integrated i.r. intensities of the CO and CS stretching bands of the thiocarbonyl complexes (η6C6H5R)Cr(CO)2(CS), where R = H, Me, Cl and CO2Me, have been determined in CS2 solutions. The intensities have been correlated with each other and with the band wavenumbers, and have been shown to be dependent on the nature of the substituent R in the aromatic ring. The intensities have been demonstrated to be better probes of the electronic effects occurring in these complexes than are the wavenumbers, and correlate well with the Hammett substituent parameters, σ0.  相似文献   

12.
Azametallacyclopropane-containing base stabilized borane complexes of group 5 transition metals have been synthesized and their structural aspects have been described. Treatment of Cp* based Ta and Nb chlorides, Cp*TaCl4 and Cp*NbCl4 with [LiBH4 ⋅ THF] followed by addition of ligands, such as 2-mercaptobenzothiazole, MBT, (C7H5NS2) and 2-mercaptobenzoxazole, MBO (C7H5NSO) led to the formation of complexes [Cp*M-[BHS(CH2ENC6H4)(C7H4NSE)] ( 1 : M=Ta, E=S; 2 ; M=Nb, E=S; 3 : M=Ta, E=O; 4 ; M=Nb, E=O, Cp*=pentamethyl-η5-cyclopentadienyl). By means of UV-vis absorption spectra, the electronic properties of these complexes associated with central metal atoms and heteroatoms (S or O) have been evaluated. In contrast, treatment of Cp*TaCl4 with 2-mercaptopyridine, MP, (C5H5NS) under the same reaction conditions yielded the agostic σ-borane Ta complex, [Cp*Ta(H3BNC5H4) (C5H4NS)(η2-S2)], 5 . Unlike 1 – 4 , where the metals interact with boron through bridging sulphur, 5 shows a notable σ-B−H bond interaction with Ta. All spectroscopic data of 1 – 5 along with the X-ray diffraction studies suggest complexes 2 , 4 , and 5 are base (amine) stabilized borane species. Computational studies based on Density Functional Theory (DFT) also supported this conclusion.  相似文献   

13.
Treatment of carbido cluster Ru5(μ 5-C)(CO)15 with Me3NO in acetonitrile solution followed by addition of dimethyl maleate or dimethyl acetylene dicarboxylate affords new clusters Ru5(μ 5-C)(CO)13[C2H2(CO2Me)2] (1) and Ru5(μ 5-C)(CO)15[C2(CO2Me)2] (2), respectively. Single crystal X-ray structural studies reveal that both complexes contain a wingtip-bridged butterfly pentametallic skeleton. In complex1 the maleate fragment is coordinated to one wingtip Ru atom through its carbon-carbon double bond and to the adjacent Ru atom by the formation of two O → Ru dative bonding interactions, while the acetylene dicarboxylate fragment in2 is best considered as acis-dimetallated alkene, linking one hinge Ru atom and the nearby Ru atom at the bridged position. Crystal data for1: space group P 42/n;a=20.199(6),c=13.941(3) Å,Z=8; finalR F=0.025,R w=0.026 for 3963 reflections withI>2σ(I). Crystal data for2: space group P21/n;a=9.634(3),b=20.062(6),c=17.372(5) Å,β=90.62(2)°,Z=4; finalR F=0 033,R w=0.036 for 4683 reflections withI>3σ(I).  相似文献   

14.
The reaction of PtRu5(CO)166-C),1 with 3-hexyne in the presence of UV irradiation produced two new electron-rich platinum-ruthenium cluster complexes PtRu5(CO)13(μ-EtC2Et)(μ3-EtC2Et)(μ5-C),2 (20% yield) and Pt2Ru6(CO)17(μ-η5-Et4C5)(μ3-EtC2Et) (μ6-C),3 (7% yield). Both compounds were characterized by single-crystal X-ray diffraction analyses. Compound2 contains of a platinum capped square pyramidal cluster of five ruthenium atoms with the carbido ligand located in the center of the square pyramid. A EtC2Et ligand bridges one of the PtRu2 triangles and the Ru-Pt bond between the apical ruthenium atom and the platinum cap. The structure of compound3 consists of an octahedral PtRu5 cluster with an interstitial carbido ligand and a platinum atom capping one of the PtRu2 triangles. There is an additional Ru(CO)2 group extending from the platinum atom in the PtRu5 cluster that contains a metallated tetraethylcyclopentadienyl ligand that bridges to the platinum capping group. There is also a EtC2Et ligand bridging one of the PtRu2 triangular faces to the capping platinum atom. Compounds2 and3 both contain two valence electrons more than the number predicted by conventional electron counting theories, and both also possess unusually long metal-metal bonds that may be related to these anomalous electron configurations. Crystal data for2, space group Pna21,a=19.951(3) Å,b=9.905(2) Å,c=17.180(2) Å,Z=2, 1844 reflections,R=0.036; for3, space group Pna21,α=13.339(1) Å,b=14.671(2) Å,c=11.748(2) Å, α=100.18(1)°, β=95.79(1)°, γ=83.671(9)°,Z=2, 3127 reflections,R=0.026.  相似文献   

15.
One-pot oxidation of R3Sb (R=Ph, Me, Cl, or C6F5) withtert-butyl hydroperoxide in the presence of 1,2-diols and monodentate donor compounds was studied. The structures of the resulting neutral organic donor-acceptor SbV complexes, Ph3(C6H4O2)Sb…OSMe2, Ph3(C6H4O2)Sb…ONC5H5, Me3(C6H4O2)Sb…ONC5H5, Me3(C6H4O2)Sb…NC5H5, Ph3(C2H4O2)Sb…ONC5H5, and Cl(C6F5)2(C2H4O2)Sb…OPPh3, were established by X-ray diffraction analysis. In these complexes, the coordination environment about the Sb atoms is a distorted octahedron. The Sb?O(N) distances and the Sb?O?E angles (E=S, N, or P) vary over wide ranges.  相似文献   

16.
A series of bridged diruthenium complexes (E)[(5-C5H4)Ru(CO)]2(-CO)2 (E = Me2Ge (2); Me2SiOSiMe2 (3); Me2SiOSiMe2OSiMe2 (4)) has been prepared by reacting Ru3(CO)12 with Cp2E in refluxing heptane. The molecular structures of (2) and (4) have been determined by X-ray diffraction.  相似文献   

17.
18.
Complete self-recognition of chirality is observed in the Michael addition of the enolate derived from R,S-[η5-C5H5Fe(CO)(PPh3-COCH3] to the acryloyl complex R,S-[(η5-C5H5Fe(CO)(PPh3)-COCHCH2)] to generate exclusively the single diastereoisomer of the glutaroyl complex RR,SS-[(η5-C5H5)Fe(CO)(PPh3)COCH2]2CH2.  相似文献   

19.
Protonation of triosmium clusters Os3(-H)(CO)9(3-,2-CC-R) (R=CMe2OH, C(Me)=CH2) affords a cationic complex containing a six-electron propargyl ligand which has been detected for the first time.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1144–1145, June, 1993.  相似文献   

20.
Density functional theory calculations have been performed for the terminal borylene, alylene, and gallylene complexes [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] (M = V, Nb; E = B, Al, Ga; R = CH(3), SiH(3), CMe(3), SiMe(3)) using the exchange correlation functional BP86. The calculated geometry parameters of vanadium borylene complex [(η(5)-C(5)H(5))(CO)(3)V{BN(SiMe(3))(2)}] are in excellent agreement with their available experimental values. The M-B bonds in the borylene complexes have partial M-B double-bond character, and the B-N bonds are nearly B═N double bonds. On the other hand, the M-E bonds in the studied metal alylene and gallylene complexes represent M-E single bonds with a very small M-E π-orbital contribution, and the Al-N and Ga-N bonds in the complexes have partial double-bond character. The orbital interactions between metal and ENR(2) in [(η(5)-C(5)H(5))(CO)(3)M(ENR(2))] arise mainly from M ← ENR(2) σ donation. The π-bonding contribution is, in all complexes, much smaller. The contributions of the electrostatic interactions ΔE(elstat) are significantly larger in all borylene, alylene, and gallylene complexes than the covalent bonding ΔE(orb); that is, the M-ENR(2) bonding in the complexes has a greater degree of ionic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号