首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The measurement of excess enthalpies, HE, at T=298.15 K and densities at temperatures between 283.15 K and 313.15 K are reported for the (2-methoxyethanol + 1,4-dioxane) and (1,2-dimethoxyethane + benzene) systems. The values of HE and the excess volumes, VE, are positive, and the temperature dependence of VE is quite small for (2-methoxyethanol + 1,4-dioxane). The (1,2-dimethoxyethane + benzene) system shows a negative HE and sigmoid curves in VE, which change sign from positive to negative with an increase in 1,2-dimethoxyethane. The temperature dependence of VE for this system is negative.  相似文献   

2.
The excess molar volumes VmE at T=298.15 have been determined in the whole composition domain for (2-methoxyethanol + tetrahydrofuran + cyclohexane) and for the parent binary mixtures. Data on VmE are also reported for (2-ethoxyethanol + cyclohexane). All binaries showed positive VmE values, small for (methoxyethanol + tetrahydrofuran) and large for the other ones. The ternary VmE surface is always positive and exhibits a smooth trend with a maximum corresponding to the binary (2-methoxyethanol + cyclohexane). The capabilities of various models of either predicting or reproducing the ternary data have been compared. The behaviour of VmE and of the excess apparent molar volume of the components is discussed in both binary and ternary mixtures. The results suggest that hydrogen bonding decreases with alcohol dilution and increases with the tetrahydrofuran content in the ternary solutions.  相似文献   

3.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

4.
Microcalorimetric measurements of excess enthalpies at the temperature T = 298.15 K are reported for the two ternary mixtures {x1(C4H8O or C5H10O) + x2C5H12O + x3C8H18}. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. It is shown that good estimates of the ternary enthalpies can be obtained from the Liebermann and Fried model, using only the physical properties of the components and their binary mixtures.  相似文献   

5.
An experimental study on metastable equilibria at T=288 K in the quinary system Li2CO3 + Na2CO3 + K2CO3 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O was done by isothermal evaporation method. Metastable equilibrium solubilities and densities of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram under the condition saturated with Li2CO3 was plotted, in which there are four invariant points; nine univariant curves; six fields of crystallization: K2CO3 · 3/2H2O, K2B4O7 · 5H2O, Li2B2O4 · 16H2O, Na2B2O4 · 8H2O, Na2CO3 · 10H2O, NaKCO3 · 6H2O. Some differences were found between the stable phase diagram at T=298 K and the metastable one at T=288 K.  相似文献   

6.
A highly accurate P, V, T,x model is developed for aqueous chloride solutions of the binary systems, viz. (LiCl + H2O), (NaCl + H2O), (KCl + H2O), (MgCl2 + H2O), (CaCl2 + H2O), (SrCl2 + H2O), and (BaCl2 + H2O). The applied ranges of temperature, pressure, and concentrations for the systems (LiCl + H2O), (NaCl + H2O), (KCl + H2O), (MgCl2 + H2O), (CaCl2 + H2O), (SrCl2 + H2O), and (BaCl2 + H2O) are (273 K to 564 K, 0.1 MPa to 40 MPa, and 0 to 10 molal), (273 K to 573 K, 0.1 MPa to 100 MPa, and 0 to 6.0 molal), (273 K to 543 K, 0.1 MPa to 50 MPa, and 0 to 4.5 molal), (273 K to 543 K, 0.1 MPa to 40 MPa, and 0 to 3.0 molal), (273 K to 523 K, 0.1 MPa to 60 MPa, and 0 to 6.0 molal), (298 K to 473 K, 0.1 MPa to 2 MPa, and 0 to 2.0 molal) and (273 K to 473 K, 0.1 MPa to 20 MPa, and 0 to 1.6 molal), respectively. Comparison of the model with thousands of experimental data points concludes that the average deviation over the above T, P, m range is 0.020% to 0.066% in density (or volume) for these systems, which indicates high accuracy. From this model, various volumetric properties, such as the apparent molar volume at infinite dilution and isochores of fluid inclusions, can be calculated, thus having a wide range of geological applications, such as reservoir fluid flow simulation and fluid-inclusion study. A computer code is developed for this model and can be downloaded from the website: www.geochem-model.org/programs.htm and online calculations is made available on: www.geochem-model.org/models.htm  相似文献   

7.
Excess molar enthalpies HmEatT =  298.15 K are reported for (N -methyl-2-pyrrolidinone  +  chlorobenzene, or 1,2-dichlorobenzene, or 1,3-dichlorobenzene, or 1,2,4,-trichlorobenzene). The values ofHmE were obtained by using the flow calorimetric method. All the mixtures, over the whole composition range, are formed exothermically. The HmEresults are discussed in terms of the NRTL and UNIQUAC models.  相似文献   

8.
By a simple DTA system, the glass transition temperatures of the quaternary ammonium type ionic liquid, {N,N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium iodide, [DEME][I] + H2O} mixtures after quick pre-cooling were measured as a function of water concentration (x mol% H2O). Results were compared with the previous results of {[DEME][BF4] + H2O} mixtures in which double glass transitions were observed in the water concentration region of (16.5 to 30.0) mol% H2O. Remarkably, we observed the double glass transition phenomenon in {[DEME][I] + H2O} mixtures too, but the two-Tgs regions lie towards the water-rich side of (77.5 to 85.0) mol% H2O. These clearly reflect the difference in the anionic effect between BF4- and I? on the water structure. The end of the glass-formation region of {[DEME][I] + H2O} mixtures is around x = 95.0 mol% H2O, and this is comparable to that of {[DEME][BF4] + H2O} mixtures (x = 96.0 mol% H2O).  相似文献   

9.
Excess molar enthalpies of (2- butanone  +  cyclohexane, or methylcyclohexane, or toluene, or chlorobenzene, or cyclohexanone) and excess molar heat capacities of (2- butanone  +  benzene, or toluene, or chlorobenzene, or cyclohexanone) were measured atT =  298.15 K. Aliphatic systems were endothermic and the chlorobenzene system was exothermic. On the other hand, the toluene system changed sign to be S-shaped similar to the benzene system reported by Kiyohara et al. The values of excess molar enthalpies of the present mixtures were slightly larger than the corresponding mixtures of cyclohexanone already reported. Excess molar heat capacities of aromatic systems were characteristically S-shaped for the mixture containing aromatics. The values of the present mixtures were less than the corresponding mixtures of cyclohexanone. The mixture (2-butanone  +  cyclohexanone) was endothermic forHmE and negative for Cp,mE.  相似文献   

10.
This work reports the results of a thermodynamic investigation of the ternary mixed-electrolyte system (CsCl + CaCl2 + H2O). The activity coefficients of this mixed aqueous electrolyte system have been studied with the electromotive force measurement (EMF) of the cell: Cs ion-selective electrode (ISE)|CsCl(mA), CaCl2(mB), H2O|Ag/AgCl at T = 298.15 K and over total ionic strengths from (0.01 to 1.50) mol · kg?1 for different ionic strength fractions yB of CaCl2 with yB = (0, 0.2, 0.4, 0.6, and 0.8). The cesium ion-selective electrode (Cs-ISE) and the Ag/AgCl electrode used in this work were made in our laboratory and had a good Nernst response. The experimental results obey the Harned rule, and the Pitzer model can be used to describe this ternary system satisfactorily. The osmotic coefficients, excess Gibbs free energies and activities of water of the mixtures were also calculated.  相似文献   

11.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

12.
An isothermal titration calorimeter was used to measure the excess molar enthalpies (HE) of six binary systems at T = 298.15 K under atmospheric pressure. The systems investigated include (1-hexanol + 2-octanone), (1-octanol + 2-octanone), (1-hexanol + octanoic acid), (1-hexanol + hexanoic acid), {N,N-dimethylformamide (DMF) + hexanoic acid}, and {dimethyl sulfoxide (DMSO) + hexanoic acid}. The values of excess molar enthalpies are all positive except for the DMSO- and the DMF-containing systems. In the 1-hexanol with hexanoic acid or octanoic acid systems, the maximum values of HE are located around the mole fraction of 0.4 of 1-hexanol, but the HE vary nearly symmetrically with composition for other four systems. In addition to the modified Redlich–Kister and the NRTL models, the Peng–Robinson (PR) and the Patel–Teja (PT) equations of state were used to correlate the excess molar enthalpy data. The modified Redlich–Kister equation correlates the HE data to within about experimental uncertainty. The calculated results from the PR and the PT are comparable. It is indicated that the overall average absolute relative deviations (AARD) of the excess enthalpy calculations are reduced from 18.8% and 18.8% to 6.6% and 7.0%, respectively, as the second adjustable binary interaction parameter, kbij, is added in the PR and the PT equations. Also, the NRTL model correlates the HE data to an overall AARD of 10.8% by using two adjustable model parameters.  相似文献   

13.
The vapour pressures of liquid (3-diethylaminopropylamine (3-DEPA) + n-heptane) mixtures were measured by a static method between T = (303.15 and 343.15) K at 10 K intervals. The molar excess enthalpies HE at T = 303.15 K were measured for the systems {3-DEPA + CnH2n+2 (n = 6, 7, 12)}. The molar excess Gibbs free energies GE were obtained with Barker’s method and fitted to the Redlich–Kister equation. The Wilson equation was also used. Deviations between experimental and predicted GE and HE, by using group contribution UNIFAC (Gmehling version) model, were evaluated.  相似文献   

14.
Isothermal (vapour  +  liquid) equilibria were measured for (trichloromethane  +  tetrahydropyran or piperidine) at T =  333.15 K and {1-bromo-1-chloro-2,2,2-trifluoroethane (halothane)  +  tetrahydropyran or piperidine} atT =  323.15 K with a circulation still. The results were verified by effective statistical procedures and used to calculate activity coefficients and excess molar Gibbs free energiesGmE . Excess molar enthalpiesHmE for these mixtures were determined at T =  298.15 K by means of an isothermal CSC microcalorimeter equipped with recently reconstructed flow mixing cells. Reliable performance of the calorimetric setup was proved by the good agreement of HmEfor (hexane  +  cyclohexane), (2-propanone  +  water), and (methanol  +  water), with the best literature results. The trichloromethane- or halothane-containing mixtures exhibit strong negative deviations from Raoult’s law and are highly exothermic, thus indicating that complex formation via hydrogen bonding is a governing nonideality effect. A close similarity in the behaviour of corresponding mixtures with trichloromethane and halothane is observed, but for halothane-containing mixtures,GmE and HmEare consistently more negative, confirming that halothane is a more powerful proton donor than chloroform.  相似文献   

15.
16.
The solubility and the density in the aqueous ternary system (Li2SO4 + MgSO4 + H2O) at T = 308.15 K were determined by the isothermal evaporation. Our experimental results permitted the construction of the phase diagram and the plot of density against composition. It was found that there is one eutectic point for (Li2SO4 · H2O + MgSO4 · 7H2O), two univariant curves, and two crystallization regions corresponding to lithium sulphate monohydrate (Li2SO4 · H2O) and epsomite (MgSO4 · 7H2O). The system belongs to a simple co-saturated type, and neither double salts nor solid solution was found. Based on the Pitzer ion-interaction model and its extended HW models of aqueous electrolyte solution, the solubility of the ternary system at T = 308.15 K has been calculated. The predicted solubility agrees well with the experimental values.  相似文献   

17.
Excess molar volumes VmEatT =  298.15 K and atmospheric pressure are reported for (N -methyl-2-pyrrolidinone  +  propan-2-ol, or butan-1-ol, or butan-2-ol, or 2-methylpropan-1-ol ). TheVmE have been calculated from measured values of density using the vibrating tube technique. The results are discussed in terms of the hydrogen bonding and other intermolecular association. Excess molar enthalpiesHmE at T =  298.15 K and atmospheric pressure are reported for (N -methyl-2-pyrrolidinone  +  propan-1-ol, or propan-2-ol, or butan-1-ol, or butan-2-ol, or 2-methylpropan-1-ol). The HmEhave been obtained using flow calorimetry. The experimental results have been correlated and compared with the results from the Extended Real Associated Solution (ERAS) theory. The parameters adjusted to the mixtures properties are two cross association parameters and the interaction parameter responsible for the exchange energy of the van der Waals interactions. Self-association parameters of the alcohols and NMP are taken from the literature.  相似文献   

18.
Polarized Raman and density functional theory (DFT) approach have been applied to study the static and dynamic properties of pyridazine (PRD) in H2O(W) and D2O(D) environment. The possible hydrogen bonded (HB) complexes of PRD with H2O in gas phase and in the water solvation (using IEF-PCM and Onsager models) have been calculated using a B3LYP functional and 6-31+G(d,p)/6-311++G(d,p) basis sets. The static interaction in the PRD + H2O complex leads to a blue shift in all the Raman modes of PRD and red shift in the O–H modes of water. The IEF-PCM solvation model gives the Raman wavenumbers closest to the experimental values. Raman spectra of ~962 and 1061 cm?1 mode of PRD in the mixture of PRD + H2O and PRD + D2O at different mole fractions of PRD (x) have been measured. A difference in the wavenumber shift of the two modes of PRD is observed experimentally when PRD is diluted with H2O and D2O. The wavenumber shift at maximum dilution (x = 0.1), however, takes the same value in both H2O and D2O. In view of the similar chemical properties of H2O and D2O, the difference in the trend of the wavenumber shift is not trivial. It has been explained on the basis of relative values of dipole moments of H2O, D2O, and conjugated molecules of PRD with H2O/D2O calculated theoretically and the role of larger diffusive property of H2O compared to D2O. The dynamical process in the mixture of PRD+ H2O/D2O is discussed by studying the variation of the linewidth with concentration. A theoretical model, which is based on the fact that the concentration in microscopic volume fluctuates, fits the experimental results nicely.  相似文献   

19.
Densities (ρ) for binary systems of (1,2,4-trimethylbenzene, or 1,3,5-trimethylbenzene + propyl acetate, or butyl acetate) were determined at four temperatures (298.15, 303.15, 308.15, and 313.15) K over the full mole fraction range. The excess molar volumes (VE) calculated from the density data show that the deviations from ideal behaviour in the systems (all being positive, excepting 1,2,4-trimethylbenzene + butyl acetate system) become more positive with the temperature increasing. Surface tensions (σ) of these binary systems were measured at the same temperatures (298.15, 303.15, 308.15, and 313.15) K by the pendant drop method, the surface tension deviations (δσ) for all system are negative, and decrease with the temperature increasing. The VE and δσ are fitted to the Redlich–Kister polynomial equation. Surface tensions were also used to estimate surface entropy (Sσ) and surface enthalpy (Hσ).  相似文献   

20.
The densities of the following: (pentane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), (hexane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), (heptane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), (octane  +  1-chloropropane, or 1-chlorobutane, or 1-chloropentane, or 1-chlorohexane), were measured at T =  298.15 K by means of a vibrating-tube densimeter. The excess molar volumes VmE, calculated from the density data, are negative for (pentane  +  1-chloropentane, or 1-chlorohexane) and (hexane  +  1-chlorohexane) over the entire range of composition. (Pentane  +  1-chlorobutane), (hexane  +  1-chloropentane) and (heptane  +  1-chlorohexane) exhibit an S-shapedVmE dependence. For all the other systems,VmE is positive. The VmEresults were correlated using the fourth-order Redlich–Kister equation, with the maximum likelihood principle being applied for determining the adjustable parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号