首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Solid State Sciences》2007,9(8):693-698
Structures, thermal expansion properties and phase transitions of ErxFe2−x(MoO4)3 (0.0  x  2.0) have been investigated by X-ray diffraction and differential thermal analysis. The partial substitution of Er3+ for Fe3+ induces pronounced decreases in the phase transition temperature from monoclinic to orthorhombic structure. Rietveld analysis of the XRD data shows that both the monoclinic and orthorhombic Fe2(MoO4)3, as well as the orthorhombic ErxFe2−x(MoO4)3 (x  0.8) have positive thermal expansion coefficients. However, the linear thermal expansion coefficients of ErxFe2−x(MoO4)3 (x = 0.6–2.0) decrease with increasing content of Er3+ and for x  1.0, compounds ErxFe2−x(MoO4)3 show negative thermal expansion properties. Attempts for making zero thermal expansion coefficient materials result in that very low negative thermal expansion coefficient of −0.60 × 10−6/°C in Er1.0Fe1.0(MoO4)3 is observed in the temperature range of 180–400 °C, and zero thermal expansion is observed in Er0.8Fe1.2(MoO4)3 in the temperature range of 350–450 °C. In addition, anisotropic thermal expansions are found for all the orthorhombic ErxFe2−x(MoO4)3 compounds, with negative thermal expansion coefficients along the a axes.  相似文献   

2.
LiCo1−xMgxPO4–graphitic carbon foam (LCMP–GCF with 0 ≤ x ≤ 0.1) composites are prepared by Pechini-assisted sol-gel method and annealed with the 2-steps annealing process (T = 300 °C for 5 min in flowing air, then at T = 730 °C for t = 12 h in flowing nitrogen). The XRD analysis, performed on powders reveals LiCoPO4 as major crystalline phase, Co2P and Co2P2O7 as secondary phases. The morphological investigation revealed the formation and growth of microcrystalline “islands” which consist of acicular crystallites with different dimensions (typically 5–50 μm). By addition of Mg-ions, CV-curves of LCMP–GCF composites show a decrease of the surface between anodic and cathodic sweeps by cycling and a stark contribution of faradaic processes due to the graphitic structured foam. The electrochemical measurements, at a discharge rate of C/10 at room temperature, show the decrease of the discharge specific capacity from 100 mAh g−1 for x = 0.0 to ∼35 mAh g−1 for 0.025 ≤ x ≤ 0.05, then an increase to 69 mAh g−1 for x = 0.1. The electrochemical impedance spectroscopy data reveal a decrease of the electrical resistance and the improvement of the Li-ion conductivity at high Mg-ions content into the LiCoPO4 phase (x ≥ 0.025).  相似文献   

3.
The ceramic powders of BaCe1?xYxO3?α (x = 0.05, 0.10, 0.15, 0.20) have been prepared via a microemulsion method. Green compacts of the powders were sintered to densities higher than 95% of theoretical at the lower temperature (1500 °C). The obtained ceramics showed a single-phase of orthorhombic perovskite. The proton conduction was investigated by employing the techniques of AC impedance and electrochemical hydrogen permeation (hydrogen pumping) at 300–600 °C. It was found that the ceramics were almost pure proton conductors in wet hydrogen, and the highest proton conductivity was observed for x = 0.15 at 600 °C. Ammonia was synthesized successfully from nitrogen and hydrogen at atmospheric pressure in the electrolytic cell using BaCe0.85Y0.15O3?α. The maximum rate of NH3 formation was found to be 2.1 × 10?9 mol s?1 cm?2 at 500 °C with an applied current of 0.75 mA.  相似文献   

4.
The thermal expansion and phase transition of solid solutions Yb2?xCrxMo3O12 have been investigated by X-ray powder diffraction and differential thermal analysis. The XRD patterns and the results of Rietveld refinement of Yb2?xCrxMo3O12 indicate that the solid solution limit was in the composition range of 0.0  x  0.4 and 1.7  x  2.0. Yb2?xCrxMo3O12 (0.0  x  0.4) has an orthorhombic structure and exhibits negative thermal expansion between 200 °C and 800 °C. Yb2?xCrxMo3O12 (1.7  x  2.0) crystallizes in monoclinic below the phase transition and above, transforms to orthorhombic. Both monoclinic and orthorhombic compounds Yb2?xCrxMo3O12 (1.7  x  2.0) present positive thermal expansion. Orthorhombic Yb2?xCrxMo3O12 exhibit anisotropic thermal expansion with the contraction of a and c axes, and the linear thermal expansion coefficients range from negative to positive with increasing chromium content. Partial substitution of Yb3+ for Cr3+ exhibits depressed monoclinic to orthorhombic phase transition.  相似文献   

5.
Oxygen permeation through dense ceramic membranes of perovskite-like SrCo0.9−xFe0.1CrxO3−δ (x = 0.01–0.05), Sr1−xyLnxCoO3−δ(Ln = La, Nd, Sm, Gd; x = 0.30–0.35; y = 0–0.10), SrCo1−xTixO3−δ (x = 0.05–0.20) and LaM1−xNixO3−δ (M = Ga, Co, Fe; x = 0–0.6) was studied. The SrCoO3−δ-based solid solutions with cubic perovskite structure were found to exhibit highest permeation fluxes compared to other membranes. However, high thermal expansion coefficients and interaction with gas species such as carbon dioxide may complicate the employment of SrCoO3−δ membranes for oxygen separation membranes. Alternatively, the LaGa1−xNixO3−δ (x = 0.2–0.5) perovskites, having significant permeation fluxes as well as thermal expansion coefficients in the range of (10.8–11.6) × 10−6 K−1, were demonstrated to be suitable as membrane materials at oxygen pressures from 1 × 10−2 to 2 × 104 Pa. Testing oxygen permeation at oxygen partial pressures of 1–60 atm showed that only oxides with a high oxygen deficiency such as SrCo0.85Ti0.15F3−δ possess sufficient oxygen permeation fluxes. The oxygen permeability of perovskites on the basis of LaGaO3 and LaCoO3−δ was found to be negligible at oxygen pressures above 15 atm, caused by low oxygen vacancy concentration and ionic conductivity of such ceramic materials.  相似文献   

6.
High performance La2−xSrxCuO4−δ (x = 0.1, 0.3, 0.5) cathode materials for intermediate temperature solid oxide fuel cell (IT-SOFCs) were prepared and characterized. The investigation of electrical properties indicated that La1.7Sr0.3CuO4 cathode has low area specific resistance (ASR) of 0.16 Ω cm2 at 700 °C and 1.2 Ω cm2 at 500 °C in air. The rate-limiting step for oxygen reduction reaction on La1.7Sr0.3CuO4 electrode changed with oxygen partial pressure and measurement temperature. La1.7Sr0.3CuO4 cathode exhibits the lowest overpotential of about 100 mV at a current density of 150 mA cm−2 at 700 °C in air.  相似文献   

7.
《Comptes Rendus Chimie》2014,17(9):920-926
Lanthanum phosphosilicate apatites with the chemical formula Sr10–xLax(PO4)6–x(SiO4)xO, where 0  x  6, usually prepared by a solid-state reaction at about 1400 °C, were synthesized via the mechanochemical method at room temperature. The samples were characterized using powder X-ray diffraction, infrared spectroscopy and thermal analysis. The results showed that the prepared products were carbonated apatites and no secondary phase was detected. The realization of the milling under a controlled atmosphere can lead to oxyapatites containing no carbonates. The ionic conductivity of the Sr6La4(PO4)2(SiO4)4O sample was investigated by using impedance spectroscopy. The highest ionic conductivity value of 1.522 × 10−6 S·cm−1 was found at 800 °C. In the investigated temperature range, the activation energy is of 0.85 eV.  相似文献   

8.
Transition metal oxides with composite xLi2MnO3 ·  (1  x)LiMO2 rocksalt structures (M = Mn, Ni, Co) are of interest as a new generation of cathode materials for high energy density lithium-ion batteries. After electrochemical activation to 4.6 or 4.8 V (vs. Li0) at 50 °C, xLi2MnO3 · (1  x)LiMn0.33Ni0.33Co0.33O2 (x = 0.5, 0.7) electrodes deliver initial discharge capacities (>300 mAh/g) at a low current rate (0.05 mA/cm2) that exceed the theoretical values for lithiation back to the rocksalt stoichiometry (240–260 mAh/g), at least during the early charge/discharge cycles of the cells. Attention is drawn to previous reports of similar, but unaccounted and unexplained anomalous behavior of these types of electrode materials. Possible reasons for this anomalous capacity are suggested. Indications are that electrodes in which M = Mn, Ni and Co do not cycle with the same stability at 50 °C as those without cobalt.  相似文献   

9.
Two new oxynitride double perovskites of composition Sr2FeMoO6?xNx (x=0.3, 1.0) have been synthesized by annealing precursor powders obtained by citrate techniques in flowing ammonia at 750 °C and 650 °C, respectively. The polycrystalline samples have been characterized by chemical analysis, x-ray and neutron diffraction (NPD), Mössbauer spectroscopy and magnetic measurements. They exhibit a tetragonal structure with a=5.5959(1) Å, c=7.9024(2) Å, V=247.46(2) Å3 for Sr2FeMoO5.7N0.3; and a=5.6202(2) Å, c=7.9102(4) Å, V=249.85(2) Å3 for Sr2FeMoO5N; space group I4/m, Z=2. The nitridation process seems to extraordinarily improve the long-range Fe/Mo ordering, achieving 95% at moderate temperatures of 750 °C. The analysis of high resolution NPD data, based on the contrast existing between the scattering lengths of O and N, shows that both atoms are located at (O,N)2 anion substructure corresponding to the basal ab plane of the perovskite structure, whereas the O1 site is fully occupied by oxygen atoms. The evolution of the 〈Fe–O〉 and 〈Mo–O〉 distances suggests a shift towards a configuration close to Fe4+(3d4, S=2):Mo5+(4d1, S=1/2). The magnetic susceptibility shows a ferrimagnetic transition with a reduced saturation magnetization compared to Sr2FeMoO6, due to the different nature of the magnetic double exchange interactions through Fe–N–Mo–N–Fe paths in contrast to the stronger Fe–O–Mo–O–Fe interactions. Also, the effect observed by low-temperature NPD seems to reduce the ordered Fe moments and enhance the Mo moments, in agreement with the evolution of the oxidation states, thus decreasing the saturation magnetization.  相似文献   

10.
The whole range of solid solutions Li(Li(1−x)/3CoxMn(2−2x)/3)O2 (0  x  1) was firstly synthesized by an aqueous solution method using poly-vinyl alcohol as a synthetic agent to investigate their structure and electrochemical properties. X-ray diffraction results indicated that the synthesized solid solutions showed a single phase without any detectable impurity phase and have a hexagonal structure with some additional peaks caused by monoclinic distortion, especially in the solid solutions with a low Co amount. In the electrochemical examination, the solid solutions in the range between 0.2  x  0.9 showed higher discharge capacity and better cyclability than LiCoO2 (x = 1) on cycling between 2.0 and 4.6 V with 100 mA g−1 at 25 °C. For example, Li(Li0.2Co0.4Mn0.4)O2 (x = 0.4) exhibited a high discharge capacity of 180 mA h g−1 at the 50th cycle. By synthesizing the solid solution between Li2MnO3 and LiCoO2, the electrochemical properties of the end members were improved.  相似文献   

11.
A new type of lithium ion conducting solid electrolyte based on a cubic rare earth oxide was developed by co-doping LiNO3 and KNO3 into a (Gd1−xNdx)2O3 solid, which possesses large interstitial open spaces within the structure. Among the samples prepared, 0.6(Gd0.4Nd0.6)2O3–0.16LiNO3–0.24KNO3 exhibits the highest lithium ion conductivity of 8.05 × 10−2 and 1.35 × 10−3 S cm−1 at 400 and 100 °C, respectively, which is comparable to that of the LISICON materials. Pure Li+ ion conduction was successfully demonstrated by the dc electrolysis method.  相似文献   

12.
《Solid State Sciences》2004,6(7):647-654
The structural, thermal and magnetic properties of the perovskite-type alkaline-earth manganites of the series Sr1−xCaxMnO3−δ (0⩽x⩽1) were investigated. SrMnO3−δ forms a hexagonal perovskite lattice and shows a first-order transformation to a highly defective cubic high-temperature modification. By substituting Ca for Sr (x>0.25) the hexagonal perovskite is suppressed and a cubic (or orthorhombic) lattice becomes stabilized for all temperatures. For x=0.5 and 0.75 cubic perovskites with a large nonstoichiometry (e.g., δ=0.25 for x=0.5) are obtained at 1400 °C. The defective perovskites are prepared by either quenching from high temperature or by cooling in an inert atmosphere. The oxygen vacancies are easily filled by subsequent reoxidation at low temperature (400–600 °C) and stoichiometric samples are obtained. Orthorhombic perovskites are formed at T⩽1200 °C with the nonstoichiometry δ increasing with increasing temperature (e.g., δ=0.06 at 1000 °C and δ=0.14 at 1200 °C for x=0.5). Slow cooling in air results in almost complete reoxidation (δ=0). CaMnO3−δ is an orthorhombic perovskite with a large range of nonstoichiometry (0⩽δ⩽0.30). The cubic to hexagonal phase transformation of the Sr-rich samples is accompanied by a large expansion of the lattice that is reduced by Ca substitution. The Ca/Sr-manganites are antiferromagnets with TN of 170 K for x=0.5 and δ=0.02 and 120 K for x=1 and δ=0.05.  相似文献   

13.
Strategies for countering the solubility of LiMn2O4 (spinel) electrodes at 50 °C and for suppressing the reactivity of layered LiMO2 (M=Co, Ni, Mn, Li) electrodes at high potentials are discussed. Surface treatment of LiMn2O4 with colloidal zirconia (ZrO2) dramatically improves the cycling stability of the spinel electrode at 50 °C in Li/LiMn2O4 cells. ZrO2-coated LiMn0.5Ni0.5O2 electrodes provide a superior capacity and cycling stability to uncoated electrodes when charged to a high potential (4.6 V vs Li0). The use of Li2ZrO3, which is structurally more compatible with spinel and layered electrodes than ZrO2 and which can act as a Li+-ion conductor, has been evaluated in composite 0.03Li2ZrO3 · 0.97LiMn0.5Ni0.5O2 electrodes; glassy LixZrO2 + x/2 (0<x⩽2) products can be produced from colloidal ZrO2 for surface coatings.  相似文献   

14.
The effects of doping the mixed-conducting (La,Sr)FeO3−δ system with Ce and Nb have been examined for the solid-solution series, La0.5−2xCexSr0.5+xFeO3−δ (x = 0–0.20) and La0.5−2ySr0.5+2yFe1−yNbyO3−δ (y = 0.05–0.10). Mössbauer spectroscopy at 4.1 and 297 K showed that Ce4+ and Nb5+ incorporation suppresses delocalization of p-type electronic charge carriers, whilst oxygen nonstoichiometry of the Ce-containing materials increases. Similar behavior was observed for La0.3Sr0.7Fe0.90Nb0.10O3−δ at 923–1223 K by coulometric titration and thermogravimetry. High-temperature transport properties were studied with Faradaic efficiency (FE), oxygen-permeation, thermopower and total-conductivity measurements in the oxygen partial pressure range 10−5–0.5 atm. The hole conductivity is lower for the Ce- and Nb-containing perovskites, primarily as a result of the lower Fe4+ concentration. Both dopants decrease oxide-ion conductivity but the effect of Nb-doping on ionic transport is moderate and ion-transference numbers are higher with respect to the Nb-free parent phase, 2.2 × 10−3 for La0.3Sr0.7Fe0.9Nb0.1O3−δ cf. 1.3 × 10−3 for La0.5Sr0.5FeO3−δ at 1223 K and atmospheric oxygen pressure. The average thermal expansion coefficients calculated from dilatometric data decrease on doping, varying in the range (19.0–21.2) × 10−6 K−1 at 780–1080 K.  相似文献   

15.
We observed the Raman spectra of carriers, positive polarons and bipolarons, generated in a poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) (PBTTT-C14) film by FeCl3 vapor doping. Electrical conductivity and Raman measurements indicate that the dominant carriers in the conducting state were bipolarons. We identified positive polarons and bipolarons generated in an ionic-liquid-gated transistor (ILGT) fabricated with PBTTT-C14 as an active semiconductor and an ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [BMIM][TFSI] as a gate dielectric using Raman spectroscopy. The relationship between the source−drain current (ID) at a constant source−drain voltage (VD) and the gate voltage (VG) was measured. ID increased above −VG = 1.1 V and showed a maximum at −VG = 2.0 V. Positive polarons were formed at the initial stage of electrochemical doping (−VG = 0.8 V). As ID increased, positive bipolarons were formed. Above VG = −2.0 V, bipolarons were dominant. The charge density (n), the doping level (x), and the mobility of the bipolarons were calculated from the electrochemical measurements. The highest mobility (μ) of bipolarons was 0.72 cm2 V−1 s−1 at x = 110 mol%/repeating unit (−VG = 2.0 V), whereas the highest μ of polarons was 4.6 × 10−4 cm2 V−1 s−1 at x = 10 mol%.  相似文献   

16.
《Polyhedron》2005,24(16-17):2242-2249
Two heterobimetallic coordination polymers, [Cu(2,4-pydc)2Mn(H2O)4]x (1) and [Cu(2,5-pydc)2Mn(H2O)2]x · 4xH2O (2), have been synthesized and structurally characterized by single crystal X-ray diffraction. Both compounds have extended 2-D sheet structures. In 1 the copper centers are linked in chains by double ligand bridges and these chains are cross-linked through the manganese coordination spheres and O–C–O bridges to form polymeric sheets. In 2 separate O–C–O bridged Cu and Mn chains are connected in an alternating array by additional ligand bridging to generate the overall 2-D structure. Analysis of magnetic data of 1 reveals that ferromagnetic exchange between the O–C–O bridged copper and manganese centers dominates the magnetic properties of this system. The magnetic data for 2 fit well to a model incorporating antiferromagnetic exchange in independent S = 1/2 and S = 5/2 linear chains with J(Cu) = −0.073 cm−1 and J(Mn) = −0.32 cm−1. Unlike the situation in 1, there is no evidence for heterometallic exchange. In both 1 and 2 the significant exchange occurs via O–C–O bridges. To study the effect of thermal dehydration on the magnetic properties of these systems, the compounds Cu(2,4-pydc)2Mn · H2O (1d) and Cu(2,5-pydc)2Mn · H2O (2d) were synthesized and studied.  相似文献   

17.
《Solid State Sciences》2007,9(6):531-534
The most condensed crystalline fluoride that appears in the Al(OH)3-tren-HFaq.-ethanol system at 190 °C is found to be [H4tren]3/2·(Al6F24)·3H2O. The structure is monoclinic, P21/c, with a = 21.939(1) Å, b = 6.7180(2) Å, c = 23.329(1) Å, β = 111.324(2)°. (Al6F24) chains result from the connection of (Al7F30)9− polyanions by opposite AlF6 octahedra. Hydrogen bonds are established between the (Al6F24) chains and ordered or disordered [H4tren]4+ cations and water molecules.  相似文献   

18.
《Solid State Sciences》2007,9(3-4):322-328
Electrochemical measurements demonstrate that magnesium surfaces can be protected by alkyl carboxylate. In a nearly neutral pH solution of sodium decanoate, the reduced corrosion rate and a passivation behaviour are attributed to the formation of Mg(C10H19O2)2(H2O)3 (Mg(C10)2) at the magnesium surface whereas heptanoate Mg(C7H13O2)2(H2O)3 (Mg(C7)2) is not efficient in such media. The crystal structures of the two metal carboxylates Mg(C7)2 and Mg(C10)2 are determined by X-ray diffraction. Single crystal data: Mg(C7)2, P21/a, a = 9.130(5) Å, b = 8.152(5) Å, c = 24.195(5) Å, β = 91.476(5)°, V = 1800.3(15) Å3, Dx = 1.242 g cm−3, Z = 4. Synchrotron powder data: Mg(C10)2, P21/a, a = 9.070(3) Å, b = 8.165(1) Å, c = 32.124(1) Å, β = 98.39(1)°, V = 2353.85(8) Å3, Dx = 1.188 g cm−3, Z = 4. Their layered structures are quite similar and differ mainly by the length of the hydrophobic chains. They consist of two planes of O-octahedra centred by Mg atoms, parallel to (001). The distorted octahedra are constituted by three oxygen atoms from carboxylate groups and by three oxygen atoms coming from water molecules. The layers are connected by hydrogen bonds. The carboxylate chains are located perpendicularly and on both sides of these planes. One carboxylate chain is bridging the Mg atom along [010] while the other is monodendate. The presence of structural water is confirmed by thermal analyses.  相似文献   

19.
《Vibrational Spectroscopy》2007,43(2):353-356
We present results of Raman scattering studies on LaMn1−xCoxO3+δ over a wide range of doping content (x = 0.1–0.75) and temperature range of 20–300 K. Powder X-ray diffraction patterns show that there is a structural change from orthorhombic to rhombohedral at x = 0.5 as x increases. Raman spectra of all LaMn1−xCoxO3+δ samples show peaks near 260, 500, and 650 cm−1. However, the Raman spectra are not drastically different from each other across the structural phase transition at x = 0.5. On the other hand, the peak frequencies of the modes near 260 and 500 cm−1 as functions of Co content (x) show slope changes at x = 0.5. The full-width at the half-maximum (FWHM) of the mode near 650 cm−1 as a function of Co content (x) shows minimum at x = 0.5. Normally, larger values of FWHM are expected at near x = 0.5, if the mode were affected by the structural disorder at the phase boundary. Therefore, it is likely due to lowest charge concentration at x = 0.5, which results in lowest screening effect. This is consistent with the fact that the intensity of the phonons is strongest at x = 0.5. As the temperature decreases, the two peaks near 500 and 650 cm−1 of different Co contents, related with octahedral distortions, are found to shift to lower frequencies unlike the usual temperature behavior. However, no abrupt change in the peak frequencies and the FWHM is observed across measured temperature range, regardless of the Co content.  相似文献   

20.
The glasses of the composition (40 ? x)PbO–(5 + x)Al2O3–54SiO2:1.0Yb2O3 (in mol%) with x ranging from 5 to 10 have been synthesized. The IR spectral studies of these glasses have indicated that there is a gradual transformation of Al3+ ions from tetrahedral to octahedral coordination with increase of Al2O3 content in the glass network. The optical absorption and luminescence spectra have exhibited bands originating from 2F7/2  2F5/2 and 2F5/2  2F7/2 transitions, respectively. From these spectra, the absorption and emission cross-sections and fluorescence lifetime of Yb3+ ions have been evaluated. Quantitative analysis of these data indicated a decreasing radiative trapping and increasing fluorescence lifetime of Yb3+ ions with increasing Al2O3 content. This may be explained by structural variations in the vicinity of Yb3+ ions due to variation in the concentration of Al2O3 in the glass network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号