首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A sensitive HPLC method with marbofloxacin (MAR) as internal standard and fluorescence detection is described for the analysis of ofloxacin (OFL) enantiomers in plasma samples. Plasma samples were prepared by adding phosphate buffer (pH 7.4, 0.1m), then extracted with trichloromethane.S-OFL,R-OFL, and the internal standard were separated on a reversed-phase column with water-methanol, 85.5∶14.5, as mobile phase. The concentrations ofS-OFL andR-OFL eluting from the column (retention times 7.5 and 8.7 min, respectively) were monitored by fluorescence detection withλ ex = 331 andλ em = 488 nm. The detection and quantitation limits were 10 and 20 ng mL−1, respectively, forS-OFL and 11 and 21 ng mL−1 forR-OFL. Response was linearly related to concentration in the range 10 to 2500 ng mL−1. Recovery was close to 93% for both compounds. The method was applied to determination of the enantiomers of OFL in plasma samples collected during pharmacokinetic studies.  相似文献   

2.
Summary An HPLC method with fluorescence detection is presented for the analysis of difloxacin (DIF) and sarafloxacin (SAR) in rabbit plasma using norfloxacin (NOR) as internal standard (Figure 1). Plasma sample preparations were carried out by adding phosphate buffer (pH 7.4, 0.1 M), followed by extraction with trichloromethane. Fluoroquinolones were separated on a reversed-phase column using an aqueous phosphate solution-acetonitrile (82:18) mobile phase. The concentrations of NOR, SAR and DIF eluting off the column, with retention times of 2.16, 5.60 and 6.20, respectively, were monitored by fluorescence detection atλ ex 338 andλ em 425 nm. The quantitation limit was 12 ng mL−1 for SAR and DIF. Standard curves were linearly related to concentration in the range from 1 to 1500 ng mL−1. Recovery was determined as 76% and 70% for SAR and DIF, respectively. Inter-and intraassay coefficients of variation were less than 6% for all compounds.  相似文献   

3.
Summary A sensitive HPLC assay for the determination of grepafloxacin (GRE) in biological samples is described. Sample preparations were carried out by adding phosphate buffer (pH 7.4, 0.1M), followed by extraction with trichloromethane. GRE and the internal standard, enrofloxacin (ENR), were separated on a reversed-phase column using an aqueous phosphate solution-acetonitrile (78∶22) mobile phase. The concentrations of ENR and GRE eluting of the column with retention times of 2.55, and 4.90 min, respectively were monitored by fluorescence atλ ex 338 andλ em 425 nm. The method was shown to be linear from 5 to 4000 ng mL−1. The detection and quantitation limits were 5 and 10 ng mL−1, respectively. Mean recovery was determined as 90%. Inter- and intra-assay precisions were 3.0% and 3.5% respectively. The method was applied to the determination of GRE in plasma samples collected during clinical pharmacokinetic studies.  相似文献   

4.
Summary An HPLC method with fluorescence detection is presented for the analysis of enrofloxcin (ENR) and ciprofloxacin (CIP) in chicken tissue using sarafloxacin (SAR) as internal standard. Tissue sample preparations were carried out by adding a phosphate buffer (pH 7.4, 0.1 M), followed by extraction with trichloromethane. Fluoroquinolones were separated on a reversed-phase column with a mobile phase of aqueous phosphate buffer-acetonitrile (80:20). The concentrations of CIP, ENR and SAR eluted off the column, with retention times of 2.28, 3.30 and 4.40, respectively, were monitored by fluorescence detection atλ ex 338 andλ em 425 nm. The detection limit was 32 ng g−1 for CIP and 10 ng g−1 for ENR. The standard curves were linearly related to concentration in the range of 1 to 2000 ng g−1. Recovery was determinated as 91.3% and 78.3% for ENR and CIP, respectively. The measurement of the tissue levels of ENR and CIP in the chicken after oral administration confirmed the utility of the proposed analytical methodology.  相似文献   

5.
An integrated solid-phase spectrophotometry–FIA method is proposed for simultaneous determination of the mixture of saccharin (1,2-benzisothiazol-3(2H)-one-1,1-dioxide; E-954) (SA) and aspartame (N-l-α-aspartyl-l-phenylalanine-1-methyl ester; E-951) (AS). The procedure is based on on-line preconcentration of AS on a C18 silica gel minicolumn and separation from SA, followed by measurement, at λ=210 nm, of the absorbance of SA which is transiently retained on the adsorbent Sephadex G-25 placed in the flow-through cell of a monochannel FIA setup using pH 3.0 orthophosphoric acid–dihydrogen phosphate buffer, 3.75×10–3 mol L−1, as carrier. Subsequent desorption of AS with methanol enables its determination at λ=205 nm. With a sampling frequency of 10 h−1, the applicable concentration range, the detection limit, and the relative standard deviation were from 1.0 to 200.0 μg mL−1, 0.30 μg mL−1, and 1.0% (80 μg mL−1, n=10), respectively, for SA and from 10.0 to 200.0 μg mL−1, 1.4 μg mL−1, and 1.6% (100 μg mL−1, n=10) for AS. The method was used to determine the amounts of aspartame and saccharin in sweets and drinks. Recovery was always between 99 and 101%. The method enabled satisfactory determination of blends of SA and AS in low-calorie and dietary products and the results were compared with those from an HPLC reference method.  相似文献   

6.
Simultaneous determination of arbutin (ART) and l-ascorbic acid (AA) by HPLC with chemiluminescence detection is proposed for the first time. This method is based on the CL reaction of acidic potassium permanganate with ART and AA in the presence of formaldehyde as enhancer. The separation was performed on a C18 column with a 90:10 (v/v) mixture of 0.02 M phosphate buffer and methanol as mobile phase. The effects of several conditions on HPLC resolution and CL emission were studied systematically. The linear ranges were 0.5–50 and 1–200 μg mL−1 for ART and AA, respectively. The detection limits were 0.2 and 0.3 μg mL−1, respectively. The method was successfully applied to the determination of ART and AA in whitening cosmetics.  相似文献   

7.
A rapid and sensitive liquid chromatography-tandem mass spectrometry assay was developed for the determination of a novel histone deacetylase inhibitor, cyclo{(2S)-2-amino-8-[(aminocarbonyl)hydrazono]decanoyl-1-l-tryptophyl-l-isoleucyl-(2R)-2-piperidinecarbonyl} (SD-2007), in rat serum. The mobile phase consisted of acetonitrile and ammonium formate (10 mM) (85:15 v/v), and the flow rate was 0.25 mL min−1. Chromatographic separations were achieved by isocratic elution on a C18 column. Multiple reaction monitoring was based on the transition of m/z = 681.8 → 83.6 for SD-2007 and 372.1 → 176.1 for trazodone (internal standard). A linearity was observed over a concentration range from 2 to 1,000 ng mL−1 (r 2 > 0.999), with the lower limit of quantification at 2 ng mL−1 with 100 μL of rat serum. The mean intra- and inter-day assay accuracy ranged from 98.5–109.7% to 95.2–102.7%, respectively, and the mean intra- and inter-day precision was between 4.3–11.3% and 2.9–13.3%. The developed assay was applied to a pharmacokinetic study of SD-2007 in rats after intravenous injection (dose 4 mg kg−1).  相似文献   

8.
Summary A high-performance liquid chromatographic method, with 9-anthryldiazomethane as derivatizing agent, has been developed for the simultaneous determination ofN-carbamoyl aspartate andl-dihydroorotate in serum. Sample preparation for 1 mL serum was by simple liquid-liquid extraction and then derivatization. The compounds were separated on a Luna C18(2) column by use of a gradient prepared from acetonitrile and 10 mM sodium acetate buffer, pH 6.0, and fluorimetric detection was performed at excitation and emission wavelengths of 365 nm and 412 nm, respectively. The response was found to be linearly dependent on concentration between 0.8 and 60 μg mL−1 forl-dihydrooratate and between 0.9 and 90 μg mL−1 forN-carbamoyl aspartate; the mean recovery rates were 50 and 51%, respectively. The limits of detection and quantification were 0.33 μg mL−1 and 0.6 μg mL−1, respectively, forl-dihydroorotate and 0.4 μg mL−1 and 0.7 μg mL−1 forN-carbamoyl aspartate. This method can be used to assess accumulation ofN-carbamoyl aspartate andl-dihydroorotate in body fluids in situations where cellular pyrimidine de novo synthesis is impaired.  相似文献   

9.
 A simple, rapid, accurate and sensitive spectrophotometric method for the determination of norfloxacin (NRF), ofloxacin (OFL) and ciprofloxacin (CPF) is described. This method is based on the formation of an ion pair with sudan III in aqueous-acetone medium [40% (v/v) acetone]. The coloured products are measured at 567, 565 and 566 nm for NRF, OFL and CPF, respectively. The optimization of various experimental conditions is described. Beer’s law is obeyed in the range 0.4–12.0, 0.4–8.8 and 0.4–10.4  ;μg mL−1 of NRF, OFL and CPF, respectively. For more accurate results, Ringbom optimum concentration ranges were 0.8–11.2, 0.6–8.5 and 0.8–10.0 μg mL−1, respectively. The results obtained showed good recoveries of ±1.2, ±1.5 and ±1.7% with relative standard deviations of 0.67, 0.83 and 1.08% for NRF, OFL, and CPF, respectively. The molar absorptivity and Sandell sensitivity were also calculated. Applications of the proposed method to representative pharmaceutical formulations are successfully presented. Received April 30, 1999. Revision November 25, 1999.  相似文献   

10.
A flow injection–solid-phase spectroscopy (FI-SPS) system implemented with photochemically induced fluorescence (PIF) is described for the rapid and very sensitive determination of reserpine in biological fluids and pharmaceutical formulations. An intensively fluorescent photoproduct is in-line generated, retained on C18 silica gel in the detection area and monitored at 394/489 nm (λ ex/λ em). After the establishment of the appropriate working variables, the system is calibrated at two different injection volumes, 100 and 800 μL, achieving detection limits of 0.33 and 0.05 ng mL−1, respectively. The RSD for reserpine at 2 ng mL−1 (800 μL) was 1.5% (n = 10). The sampling rates were 46 and 43 h−1 for each injection volume, respectively. The potential interference of some common species coexisting with reserpine in the analysed samples was also studied. The procedure was successfully applied to commercial formulations, urine and serum without any previous treatment of samples. Recoveries ranged from 94.9 to 100.2%.  相似文献   

11.
Summary An automated microbore, liquid chromatographic method with column-switching was developed for the determination of clomipramine from human plasma samples. After direct injection of samples (60 μL), plasma proteins and clomipramine were separated in size-exclusion mode using 20% acetonitrile in 20 mM phosphate buffer (pH 7.0) on Capcell Pak MF Ph-1 precolumn (10×4 mm I.D.). By valve switching, a fraction containing clomipramine was directed to an intermediate column for subsequent main separation on a microbore C18 column (250×1.5 mm I.D.) using 50% acetonitrile in 20 mM phosphate buffer (pH 2.5) at 0.1 mL min−1. The method was advantageous for rapidity (total analysis time: 15 min), reproducibility (C.V.<4.8%), and increased sensitivity (1 ng mL−1). The linearity of response was good (r 2≥0.999) over the concentration range 1–250 ng mL−1.  相似文献   

12.
Glycyrrhizic acid (GL) is a major active compound of licorice. The specific monoclonal antibody (MAb) (designated as 8F8A8H42H7) against GL was produced with the immunogen GL–BSA conjugate. The dissociation constant (K d) value of the MAb was approximately 9.96×10−10 M. The cross reactivity of the MAb with glycyrrhetic acid was approximately 2.6%. The conventional indirect competitive enzyme-linked immunosorbent assay (icELISA) and simplified icELISA adapted with a modified procedure were established using the MAb. The IC50 value and the detect range by the conventional icELISA were 1.1 ng mL−1 and 0.2–5.1 ng mL−1, respectively. The IC50 value and the detect range by the simplified icELISA were 5.3 ng mL−1 and 1.2–23.8 ng mL−1, respectively. The two icELISA formats were used to analyze GL contents in the roots of wild licorice and different parts of cultivated licorice (Glycyrrhiza uralensis Fisch). The results obtained with the two icELISAs agreed well with those of the HPLC analysis. The correlation coefficient was more than 0.98 between HPLC and the two icELISAs. The two icELISAs were shown to be appropriate, simple, and effective for the quality control of raw licorice root materials.  相似文献   

13.
Summary An improved HPLC method with electrochemical detection has been developed for the determination of olanzapine and its main metabolite, desmethylolanzapine, in human plasma. Chromatographic separation and analysis were performed on a C8 reversed-phase column with a mixture of methanol, acetonitrile, and pH 3.7 phosphate buffer as mobile phase; 2-methylolanzapine was used as internal standard. Careful pretreatment of the plasma samples was implemented by means of solid phase extraction (SPE). Response was linearly dependent on concentration and precision was satisfactory over the concentration range 0.5–75.0 ng mL−1 for both analytes. The limit of detection was 0.2 ng mL−1 for both analytes. Application to plasma samples of patients treated with Zyprexa tablets gave good results. Because of its sensitivity and selectivity, and the need for small plasma samples, this method seems to be a useful tool for clinical monitoring.  相似文献   

14.
A stability-indicating reversed-phase liquid chromatographic (RPLC) method has been established for analysis of ramipril (RAM) and moexipril hydrochloride (MOEX.HCl) in the presence of the degradation products generated in studies of forced decomposition. The drug substances were subjected to stress by hydrolysis (0.1 m NaOH and 0.1 m HCl), oxidation (30% H2O2), photolysis (254 nm), and thermal treatment (80 °C). The drugs were degraded under basic and acidic conditions and by thermal treatment but were stable under other stress conditions investigated. Successful separation of the drugs from the degradation products was achieved on a cyanopropyl column with 40:60 (v/v) aqueous 0.01 m ammonium acetate buffer (pH 6)–methanol as mobile phase at a flow rate of 1 mL min−1. Detection was by UV absorption at 210 nm. Response was a linear function of concentration over the range 5–50 μg mL−1 (r > 0.9995), with limits of detection and quantitation (LOD and LOQ) of 0.04 and 0.09 μg mL−1, respectively, for RAM and 0.014 and 0.32 μg mL−1, respectively, for moexipril. The method was validated for specificity, selectivity, solution stability, accuracy, and precision. Statistical analysis proved the method enabled reproducible and selective quantification of RAM and MOEX as the bulk drug and in pharmaceutical preparations. Because the method effectively separates the drugs from their degradation products, it can be used as stability-indicating.  相似文献   

15.
Summary Gas chromatography with electron capture detection (GC-ECD) for the analysis of methylmercury choloride (MMC) using a packed column and a capillary column has been investigated. The columns were 2% silicone OV-227 Uniport HP glass column and a DB-17 capillary column, each pretreated by about ten injections of HBr-methanol solution. MMC was separated as a sharp peak by the HBr-teated column and determined directly by ECD without derivatisation. The mass spectrum of MMC indicated that halide exchange from chloride to bromide proceeded during separation. The minimum detectable concentrations were approximately 5 ng mL−1 on the packed column, and 2 ng mL−1 on the capillary. Calibration curves showed good linearity between 5–200 ng mL−1 for the packed column, and between 2–200 ng mL−1 for the capillary. Relative standard deviations of peak areas were 0.95% for the packed column and 0.43% for the capillary at the level of 100 ng mL−1 in both cases. The column treatment technique was applicable to determination of methylmercury in fish samples.  相似文献   

16.
Summary A high-performance liquid chromatographic method with amperometric detection has been developed for the determination of levels of clozapine (CLZ) and its active metabolite N-desmethylclozapine (DMC) in human plasma. The analysis was performed on a 5 μm C8 reversed phase column (150×4.6 mm i.d.), with acetonitrile-phosphate buffer (pH 3.5), as the mobile phase. The detection voltage was +800 mV and the cell and column temperature were 50°C. Linear responses were obtained between 2 ng mL−1 and 100 ng mL−1. Absolute recovery for both clozapine and desmethylclozapine exceeded 88% and the detection limit was 1 ng mL−1. Repeatability, intermediate precision and accuracy were satisfactory. The method, which is rapid, sensitive and selective, has been applied to therapeutic drug monitoring in schizophrenic patients following administration of Leponex? tablets. In 21 patients in steady state at a mean daily clozapine dosage of 358 mg (ranging from 150 to 500 mg day−1), clozapine levels averaged 379 ng mL−1 (ranging from 102 to 818 ng mL−1) and DMC levels averaged 233 ng mL−1 (ranging from 70 to 540 ng mL−1). The method requires only a very small amount of plasma (100 μL), and thus it is suitable for pharmacokinetic studies, as well as for therapeutic drug monitoring.  相似文献   

17.
A rapid, sensitive, and accurate high-performance liquid-chromatographic–mass spectrometric (HPLC–MS) method, with estazolam as internal standard, has been developed and validated for determination of aripiprazole in human plasma. After liquid–liquid extraction the compound was analyzed by HPLC on a C18 column, with acetonitrile—30 mm ammonium acetate containing 0.1% formic acid, 58:42 (v/v), as mobile phase, coupled with electrospray ionization mass spectrometry (ESI-MS). The protonated analyte was quantified by selected-ion recording (SIR) with a quadrupole mass spectrometer in positive-ion mode. Calibration plots were linear over the concentration range 19.9–1119.6 ng mL−1. Intra-day and inter-day precision (CV%) and accuracy (RE%) for quality-control samples (37.3, 124.4, and 622.0 ng mL−1) ranged between 2.5 and 9.0% and between 1.3 and 3.5%, respectively. Extraction recovery of aripiprazole from plasma was in the range 75.8–84.1%. The method enables rapid, sensitive, precise, and accurate measurement of the concentration of aripiprazole in human plasma.  相似文献   

18.
The quick separation and simultaneous determination of d-amphetamine and diphenhydramine in the quick-acting anti-motion capsules was investigated by capillary zone electrophoresis. The influence of different parameters (internal standard, injection modes, pH, concentration of the running buffer and applied voltage) was systematically studied. The two compounds could be well separated within 2.0 min in a 40.2 cm fused-silica capillary at a separation voltage of 20 kV in a 50 mM phosphate–12.5 mM borate buffer adjusted to pH 5.5. Correlation coefficients for calibration curves in the range 0.50–1.50 μg mL−1 for d-amphetamine and 2.75–8.25 μg mL−1 for diphenhydramine were higher than 0.999. The limits of detection of d-amphetamine and diphenhydramine were 10.0 and 5.5 ng mL−1 and the recoveries of the compounds in the QAAMC were 99.80 and 99.85%, respectively. The authors L. Zhang and Y. Chen equally contributed to this work.  相似文献   

19.
Summary The potential of capillary zone electrophoresis has been investigated for the separation and quantitative determination of some quinolone antibiotics. The influence of different conditions, such as the nature and concentration of the electrophoretic electrolyte, on migration time, peak symmetry, efficiency and resolution was studied. A buffer consisting of 100mm HEPES adjusted to pH 8.5 containing 10% (v/v) acetonitrile was found to furnish a very efficient and stable electrophoretic system for the separation of exoxacin, ciprofloxacin, ofloxacin, oxolinic acid, nalidixic acid and pipemedic acid. A linear relationship between concentration and peak area for each compound was obtained in the concentration range 0.25–40 μg mL−1; detection limits were approximately 0.25 ng mL−1. It was demonstrated that the method can be used for the simultaneous determination of these six antibiotics in serum and urine samples.  相似文献   

20.
A simple, rapid, and precise reversed-phase high-performance liquid chromatographic method has been developed for simultaneous determination of losartan potassium, ramipril, and hydrochlorothiazide. The three drugs were separated on a 150 mm × 4.6 mm i.d., 5 μm particle, Cosmosil C18 column. The mobile phase was 0.025 m sodium perchlorate–acetonitrile, 62:38 (v/v), containing 0.1% heptanesulphonic acid, pH adjusted to 2.85 with orthophosphoric acid, at a flow rate of 1.0 mL min−1. UV detection was performed at 215 nm. The method was validated for linearity, accuracy, precision, and limit of quantitation. Linearity, accuracy, and precision were acceptable in the ranges 35–65 μg mL−1 for losartan, 1.75–3.25 μg mL−1 for ramipril, and 8.75–16.25 μg mL−1 for hydrochlorothiazide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号