首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polystyrene/nano-CdSe (PS/CdSe) core/shell microspheres were synthesized via in situ soap-free emulsion polymerization using various functional monomers such as 2-(dimethylamino)ethyl methacrylate, 1-vinylimidazole, 2-vinylpridine, and 4-vinylpridine. They were co-polymerized with styrene monomer and provided the location for coordinating with Cd2+ ions on the PS particle surfaces. Then, we used an alkaline selenium solution as a selenium source. Reaction of the alkaline selenium solution with the previous emulsion produced nanocrystalline CdSe onto the surface of PS particles at room temperature under atmospheric pressure. The different kinds of functional monomers and the amount of both Cd2+ ion and functional monomer were playing important roles to obtain stable and uniform morphologies of CdSe particles. Morphological observations were carried out by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Through the SEM and TEM microphotographs, we could confirm the formation of PS/nano-CdSe composite particles. Ultraviolet–visible absorption measurement indicated the quantum dot effect in the resulted PS/nano-CdSe core/shell microspheres.  相似文献   

2.
Cadmium sulfide/polystyrene (CdS/PS) hybrid particles were synthesized and their physical characteristics including electrorheology were examined. Monodisperse CdS/PS nanocomposite particles with diameters of 2 μm were obtained via dispersion polymerization. To form cadmium sulfide nanoparticles onto the PS surface, 2-(dimethylamino)ethyl methacrylate was used as a functional monomer for coordinating with Cd2+ ions. Finally, cadmium sulfide nanoparticles with size < 10 nm were formed with the release of S2− ions from thioacetamide. The morphology of the as-prepared CdS/PS nanocomposite particles clearly showed that the CdS particles are present on the surface of the PS. The optical properties were also studied. In addition, their electrorheological characteristics were confirmed by using optical microscopy with applied electrical field. Recently, dielectric properties of CdS nanoparticles were already reported; however, electrorheological characteristics of CdS/PS nanocomposite particles were investigated for the first time.  相似文献   

3.
This article presents a facile method to prepare silver/polystyrene composite microspheres. In this approach, monodispersed polystyrene (PS) particles were synthesized with carboxyl acid groups on the surfaces of the PS particles via dispersion polymerization at first. With the addition of [Ag(NH3)2]+ to the PS dispersion, [Ag(NH3)2]+ was absorbed to the surfaces of the PS particles, and then by heating the system, [Ag(NH3)2]+ complex ions were reduced to silver to form the Ag/PS composite microspheres. In the synthesis of PS dispersion, PVP was used as dispersant to stabilize the PS particles, it also acted as reducing agent in the reduction of [Ag(NH3)2]+ complex ions to silver, so no additional reducing agent was needed. The resulting composite microspheres were characterized by TEM, SEM, XPS, and XRD. The catalytic properties and surface‐enhance Raman scattering (SERS) was studied as well. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4547–4554, 2009  相似文献   

4.
This article presents a facile method for the preparation of polystyrene/silver (PS/Ag) composite microspheres. In this approach, monodisperse PS spheres were synthesized via dispersion polymerization and modified by sulfonation to obtain sulfonated PS spheres with sulfonic acid groups on the surfaces, and then adsorbed Sn2+ ions by electrostatic interaction and used as templates. PS/Ag composite microspheres were prepared successively by addition of [Ag(NH3)2]+ complex ions to the templates dispersion, adsorbing to the surfaces of templates, and then reduction of [Ag(NH3)2]+ complex ions to Ag nanoparticles by sodium potassium tartrate. The results showed that monodisperse PS spheres with sulfonic acid groups on the surfaces were coated by an incomplete and nonuniform coverage of Ag nanoparticles in the absence of Sn2+ ions. In the presence of Sn2+ ions, however, complete and uniform Ag nanoparticles coatings were obtained on the entire PS sphere. And the deposition density and size of Ag nanoparticles can be controlled by [Ag(NH3)2]+ concentration. The resulting PS/Ag composite microspheres were characterized by SEM, TEM, XRD, TGA, and UV-vis. Preliminary catalytical tests indicated these PS/Ag composite microspheres showed good catalytic properties.  相似文献   

5.
Core/shell poly(methyl methacrylate)/cadmium sulfide (PMMA/CdS) nanoparticles were prepared by surfactant-free emulsion copolymerization with 2-(dimethylamino)ethyl methacrylate (DMAEMA) auxiliary monomer. According to the addition time of Cd2+ ions, the synthesis of the hybrid nanoparticles was conducted in in situ and ex situ techniques. The core/shell PMMA/CdS nanoparticles synthesized by the post-addition (ex situ) of Cd2+ ions showed a wide size distribution and interference fringes in the photoluminescence (PL) spectrum. However, these results were improved when the PMMA/CdS nanoparticles were synthesized in the presence of Cd2+ ions (in situ method). The in situ method made it possible to obtain monodisperse hybrid nanoparticles and fairly narrow band-gap emission.  相似文献   

6.
In this study, silica/polystyrene/polyaniline (SiO2/PS/PANI) conductive composite particles were synthesized by four sequential reactions. The nanosized SiO2 particles were synthesized from tetraethoxysilane (TEOS) by a sol–gel process with water as the solvent medium, followed by a surface modification with triethoxyvinylsilane; then the surface modified SiO2 particles were used as seeds to synthesize SiO2/PS composite particles with soapless seeded emulsion polymerization. Finally, the SiO2/PS particles were used as seeds to synthesize the SiO2/PS/PANI conductive composite particles. The sol–gel process of SiO2, the effect of surface modification, and several other factors that influenced polymerization of styrene in the soapless seeded emulsion polymerization will be discussed. Either potassium persulfate (KPS) or 2,2′‐azobis(isobutyramidine) dihydrochloride (AIBA) was used as the initiator to synthesize the uniform SiO2/PS particles successfully, and the cross‐section morphology of the SiO2/PS particles was found to be of a core–shell structure, with SiO2 as the core, and PS as the shell. The SiO2/PS particles were well dispersed in many organic solvents. In the following step to synthesize SiO2/PS/PANI conductive composite particles, sodium dodecyl sulfate (SDS) played an important role, specifically, to absorb aniline onto the surfaces of the SiO2/PS particles to carry out the polymerization of aniline over the entire surface of the particles. The conductivity of the SiO2/PS/PANI composite particles approached that of semiconductive materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 342–354, 2005  相似文献   

7.
Micrometer-sized, hemispherical polystyrene (PS) particles were successfully prepared by microsuspension polymerization of homogeneous styrene/hexadecane (HD) droplets dispersed in polyoxyethylene nonylphenyl ether (Emulgen 931) aqueous solution, followed by rapid removal of HD from formed PS/HD particles with a “Janus” structure. It was important for the formation of the morphology of Janus particles in thermodynamically stable state to carry out the polymerization slowly. The formation of by-product small PS particles by emulsion polymerization was suppressed by the additions of CuCl2 as a water-soluble inhibitor and NaCl to decrease the solubility of styrene in the aqueous phase.  相似文献   

8.
A new class of solid‐phase extraction column prepared with grafted mercapto‐silica polymerized high internal phase emulsion particles was used for the preconcentration of trace lead. First, mercapto‐silica polymerized high internal phase emulsion particles were synthesized by using high internal phase emulsion polymerization and carefully assembled in a polyethylene syringe column. The influences of various parameters including adsorption pH value, adsorption and desorption solvents, flow rate of the adsorption and desorption procedure were optimized, respectively, and the suitable uploading sample volumes, adsorption capacity, and reusability of solid phase extraction column were also investigated. Under the optimum conditions, Pb2+ could be preconcentrated quantitatively over a wide pH range (2.0–5.0). In the presence of foreign ions, such as Na+, K+, Ca2+, Zn2+, Mg2+, Cu2+, Fe2+, Cd2+, Cl? and NO3?, Pb2+ could be recovered successfully. The prepared solid‐phase extraction column performed with high stability and desirable durability, which allowed more than 100 replicate extractions without measurable changes of performance. The feasibility of the developed method was further validated by the extraction of Pb2+ in rice samples. At three spiked levels of 40.0, 200 and 800 μg/kg, the average recoveries for Pb2+ in rice samples ranged from 87.3 to 105.2%.  相似文献   

9.
TiO2/PVA composite nanofiber mat was prepared via an electrospinning technology. SH‐TiO2‐SiO2 hybrid particles and PVA solution were injected through a coaxial syringe, yielding a composite nanofiber mat. The as‐prepared SH‐TiO2‐SiO2/PVA composite nanofiber mat was immersed in Cd2+ cation solution and S2? anion solution in turn. Thus, yellow TiO2@CdS/PVA composite nanofiber mats were prepared. By adjusting the number of times a mat was immersed in the Cd2+ and S2? solutions, different amounts of CdS particles attaching to the mats were obtained. Both SH‐TiO2‐SiO2/PVA and TiO2@CdS/PVA composite nanofiber mats were employed to catalyze the photodegradation of a model dye, methylene blue. The photodegradation performance could be greatly enhanced by the introduction of CdS particles anchoring onto TiO2 particles. The photodegradation efficiency reached 99.2% within 180 min. Also, the nanofiber mat could be recycled and reused at least 10 times. The photodegradation efficiency of TiO2@CdS/PVA composite nanofiber mats remained 68.8% for 10 cycles.  相似文献   

10.
Cellulose/chitosan composites were successfully prepared in a new and basic-based solvent system, ethylene diamine/potassium thiocyanate (EDA/KSCN), by dissolving cellulose and chitosan in 70/30 (w/w) EDA/KSCN at ?19 °C, and then coagulating in methanol. Wide angle X-ray diffraction studies revealed that the EDA/KSCN solvent system is capable of disrupting the hydrogen bonds in both cellulose and chitosan and increase the amorphous regions. Stability tests proved that the composites are stable in acidic aqueous solution due to the hydrogen bonds formed between cellulose and chitosan. This is the first time to dissolve chitosan in a basic-based solvent system and prepare cellulose/chitosan composites in a straightforward way. The adsorption of heavy metal ions (Cu2+, Cd2+, and Pb2+) onto the cellulose/chitosan composites was investigated. The adsorption capacity is highly dependent on pH and the maximum metal uptake was obtained at pH 5.0. Increasing initial metal concentration enhanced the diffusion of metal ions to the composite surface and therefore the metal removal efficiency. Higher percentage of chitosan in the composites also led to higher metal adsorption. The results indicated that the prepared cellulose/chitosan (1:1) composite can adsorb 0.53 mmol/g Cu2+, 0.28 mmol/g Cd2+ and 0.16 mmol/g Pb2+ ions at pH 5.0. The Freundlich model and the pseudo-second-order model were in good agreement with the adsorption isotherms and kinetics, respectively. X-ray photoelectron spectroscopy studies indicated that the binding of heavy metal ions is attributed to the nitrogen atoms of amino groups in chitosan. The composites can be reused for metal removal.  相似文献   

11.
In the present work, linear polystyrene (PS) was functionalized by a sulfonation reaction providing sulfonated polystyrene (PSS). Then, the PSS polymer chains were cross-linked with the 1,4-phenylene diisocyanate (PPDI) group in tetrahydrofuran (THF), which led to a PSS-PPDI polymer. The PSS-PPDI was grafted by diethylenetriamine (DETA) in a solution of THF to obtain polymer PSS-PPDI-DETA. Their structures were characterized by infrared spectroscopy (ATR-FTIR), elemental analysis (EA), differential scanning calorimetry (DSC), thermogravemetric (TGA), thermodynamic (DTA) and differential thermogravimetric (DTG) analysis. Subsequently, the obtained polymers were tested for their ability to remove some metal ions from aqueous media such as Zn2+, Cd2+ and Co2+.  相似文献   

12.
The atom transfer radical polymerization (ATRP) technique using the copper halide/ N,N′,N′,N″,N″‐pentamethyldiethylenetriamine complex was applied to the graft polymerization of methyl methacrylate and methyl acrylate on the uniform polystyrene (PS) seed particles and formed novel core‐shell particles. The core was submicron crosslinked PS particles that were prepared via emulsifier‐free emulsion polymerization. The crosslinked PS particles obtained were transferred into the organic phase (tetrahydrofuran), and surface modification using the chloromethylation method was performed. Then, the modified seed PS particles were used to initiate ATRP to prepare a controlled poly(methyl methacrylate) (PMMA) and poly(methyl acrylate) (PMA) shell. The final core‐shell particles were characterized using Fourier transform infrared spectroscopy, nuclear magnetic resonance, scanning electron microscopy, thermogravimetric analysis, and elementary analysis. The grafting polymerization was conducted successfully on the surface of modified crosslinked PS particles, and the shell thickness and weight ratio (PMMA and PMA) of the particles were calculated. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 892–900, 2002; DOI 10.1002/pola.10160  相似文献   

13.
ZnO/polystyrene composite particles were synthesized by Pickering emulsion polymerization. ZnO nanoparticles were first prepared by reaction of zinc acetate and sodium hydroxide in ethanol medium. Then different amount of styrene monomer was emulsified in water in the presence of ZnO nanoparticles either by mechanical stirring or by sonication, followed by polymerization of styrene. Two kinds of initiators were used to start the polymerization, azobisisobutyronitrile (AIBN) and potassium persulfate (KPS). The X-ray diffraction pattern verified the crystal structure of ZnO and FT-IR spectra evidenced the existence of ZnO and polystyrene (PS) in ZnO/polystyrene composite particles. Different morphologies were observed for the composite particles when using different initiators. From TEM photographs, AIBN-initiated system produced mainly core-shell composite particles with PS as core and ZnO as shell, while KPS-initiated system showed both composite particles and pure PS particles. Two schemes of reaction mechanism were proposed to explain the morphologies accordingly. Both systems of composite particles showed good pH adjusting ability.  相似文献   

14.
In this work, Fe3O4/polystyrene/poly(N‐isopropylacryl amide‐co‐methylacrylate acid) (Fe3O4/PS/P(NIPAAM‐co‐MAA)) magnetic composite latex was synthesized by the method of two stage emulsion polymerization. In this reaction system, 2,2′‐azobis(2‐methyl propionamidine) dihydrochloride (AIBA) was used as initiator to initiate the first stage reaction and second stage reaction. The Fe3O4 particles were prepared by a traditional coprecipitation method. Fe3O4 particles were surface treated by either PAA oligomer or lauric acid to form the stable ferrofluid. The first stage for the synthesis of magnetic composite latex was to synthesize PS in the presence of ferrofluid by soapless emulsion polymerization to form the Fe3O4/PS composite latex particles. Following the first stage of reaction, the second stage of polymerization was carried out by the method of soapless emulsion polymerization with NIPAAM and MAA as monomers and Fe3O4/PS latex as seeds. The magnetic composite particles, Fe3O4/PS/P(NIPAAM‐co‐MAA), were thus obtained. The mechanism of the first stage reaction and second stage reaction were investigated. Moreover, the effects of PAA and lauric acid on the reaction kinetics, morphology, and particle size distribution were studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3912–3921, 2007  相似文献   

15.
Nickel–polystyrene composite materials produced by the chemical deposition of nickel on polystyrene beads exhibit high conductivity at a nickel concentration of less than one percent by volume. These composites exhibit a higher sensitivity to Ni2+ions (RT/zF) than bulk nickel. According to X-ray photoelectron spectroscopy data, the increased sensitivity of nickel–polystyrene electrodes is due to the formation of a modified surface layer of the composite containing a nickel–polystyrene complex and to direct Ni2+ion exchange at the interface between the solution and this layer.  相似文献   

16.
以乳液聚合制备的聚苯乙烯乳液为种子,加入甲基三甲氧基硅烷(MTMS)水解溶液进行缩聚反应,合成亚微米级聚苯乙烯/聚硅氧烷核壳粒子,并以此作为光散射剂添加至聚甲基丙烯酸甲酯(PMMA)树脂中,制备了光散射材料;考察了亚微米级核壳粒子添加在PMMA树脂中的分散性。结果表明:经过双螺杆剪切作用的挤出加工后,可以实现核壳粒子在PMMA树脂中的良好分散。核壳粒子可以大幅度提高PMMA的雾度,当聚苯乙烯/聚硅氧烷核壳粒子(NS82)的含量为1%时,制得的PMMA样片(厚度为2 mm)的雾度为89%,透光率为69%,有效光散射系数为61%。  相似文献   

17.
《中国化学快报》2019,30(12):2211-2215
An electrochemical sensor based on self-made nano-porous pseudo carbon paste electrode (nano-PPCPE) has been successfully developed, and used to detect Cd2+ and Pb2+. The experimental results showed that the electrochemical performance of nanoPPCPE is evidently better than both glassy carbon electrode (GCE) and pure carbon paste electrode (CPE). Then the prepared nano-PPCPE was applied to detect Cd2+ and Pb2+ in standard solution, the results showed that the electrodes can quantitatively detect trace Cd2+ and Pb2+, which has great significance in electrochemical analysis and detection. The linear ranges between the target ions concentration and the DPASV current were from 0.1–3.0 μmol/L, 0.05–4.0 μmol/L for Cd2+ and Pb2+, respectively. And the detection limits were 0.0780 μmol/L and 0.0292 μmol/L, respectively. Moreover, the preparation of the nano-PPCPE is cheap, simple and has important practical value.  相似文献   

18.
Macroporous polystyrene microsphere/graphene oxide(PS/GO) composite monolith was first prepared using Pickering emulsion droplets as the soft template. The Pickering emulsion was stabilized by PS/GO composite particles in-situ formed in an acidic water phase. With the evaporation of water and the oil phase(octane), the Pickering emulsion droplets agglomerated and combined with each other, forming a three-dimensional macroporous PS/GO composite matrix with excellent mechanical strength. The size of the macrospores ranged from 4 mm to 20 mm. The macroporous PS/GO composite monolith exhibited high adsorption capacity for tetracycline(TC) in an aqueous solution at p H 4–6. The maximum adsorption capacity reached 197.9 mg g 1at p H 6. The adsorption behaviour of TC fitted well with the Langmuir model and pseudo-second-order kinetic model. This work offers a simple and efficient approach to fabricate macroporous GO-based monolith with high strength and adsorption ability for organic pollutants.  相似文献   

19.
In this work, an iron oxide (Fe3O4)/polystyrene (PS)/poly(N‐isopropylacryl amide‐co‐methacrylic acid) [P(NIPAAM–MAA)] thermosensitive magnetic composite latex was synthesized by the method of two‐stage emulsion polymerization. The Fe3O4 particles were prepared by a traditional coprecipitation method and then surface‐treated with either a PAA oligomer or lauric acid to form a stable ferrofluid. The first stage for the synthesis of the thermosensitive magnetic composite latex was to synthesize PS in the presence of a ferrofluid by emulsion polymerization to form Fe3O4/PS composite latex particles. Following the first stage of reaction, the second stage of polymerization was carried out with N‐isopropylacryl amide and methacrylic acid as monomers and with Fe3O4/PS latex as seeds. The Fe3O4/PS/[P(NIPAAM–MAA)] thermosensitive magnetic particles were thus obtained. The effects of the ferrofluids on the reaction kinetics, morphology, and particle size of the latex were discussed. A reaction mechanism was proposed in accordance with the morphology observation of the latex particles. The thermosensitive property of the thermosensitive magnetic composite latex was also studied. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3062–3072, 2007  相似文献   

20.
The effects of the concentration of polyoxyethylene octylphenyl ether (OP-10) as a nonionic surfactant and the molecular weight of polymers (polystyrene (PS) and poly(methyl methacrylate) (PMMA)) on the morphology of anisotropic PS/PMMA composite particles were investigated. In the case of polymers with lower molecular weight (M w ≈ 6.0 × 104 g/mol), the PS/PMMA composite particles have dimple, via acorn, to hemispherical shapes along with the increase of the OP-10 concentration. On the other hand, when the polymers have higher molecular weight (M w ≈ 3.3 × 105 g/mol), the morphology of PS/PMMA composite particles changed from dimple, via hemispherical, to snowman-like structure while the concentration of OP-10 was increased. Furthermore, thermodynamic analysis was first simply made by spreading coefficients, and the results indicated that both the concentration of OP-10 aqueous solution and the molecular weight of polymers were very important to the final morphology of anisotropic composite particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号