首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
We have studied the electronic structure and charge-carrier dynamics of individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using optical and electron–spectroscopic techniques. The electronic structure of semiconducting SWNTs in the band-gap region is analyzed using near-infrared absorption spectroscopy. A semi-empirical expression for E11S transition energies, based on tight-binding calculations is found to give striking agreement with experimental data. Time-resolved PL from dispersed SWNT-micelles shows a decay with a time constant of about 15 ps. Using time-resolved photoemission we also find that the electron–phonon (e–ph) coupling in metallic tubes is characterized by a very small e–ph mass-enhancement of 0.0004. Ultrafast electron–electron scattering of photo-excited carriers in nanotube ropes is finally found to lead to internal thermalization of the electronic system within about 200 fs. PACS 78.47.+p; 81.07.De; 78.67.Ch; 87.64.Ni  相似文献   

2.
We present the first-principles investigation of the transport properties of nanotubes connected to metal electrodes under external bias potential. We have developed the technique to calculate the current–voltage (IV) curves by using the local-density approximation in the density-functional theory. We apply this technique to Al-nanotube-Al systems with different contact geometries regarding the position, the orientation, and the distance of nanotube to the electrode. These different geometries at contact can play an important role in the transport properties. The IV curves have the different behaviors although the nanotube is connected to the same electrode. The transmission rate from one electrode to the other electrode shows strong dependence on the contact geometry.  相似文献   

3.
Flame synthesis of single-walled carbon nanotubes   总被引:1,自引:0,他引:1  
Flames offer potential for synthesis of carbon nanotubes in large quantities at considerably lower costs than that of other methods currently available. This study aims to examine conditions for carbon nanotube formation in premixed flames and to characterize the morphology of solid carbon deposits and their primary formation mechanisms in the combustion environment. Single-walled nanotubes have been observed in the post-flame region of a premixed acetylene/oxygen/15 mol% argon flame operated at 6.7 kPa with Fe(CO)5 vapor used as a source of metallic catalyst necessary for nanotube growth. Thermophoretic sampling and transmission electron microscopy were used to characterize the solid material present in the flame at various heights above burner (HAB), giving a resolution of formation dynamics within the flame system. Catalyst particle formation and growth is observed to dominate the immediate post-flame region (10–40 mm HAB). Nanotubes were observed to be present after 40 mm HAB with nanotube inception occurring as early as 30 mm HAB. Between 40 and 70 mm HAB, nanotubes are observed to coalesce into clusters. A nanotube formation ‘window’ is evident with formation limited to fuel equivalence ratios between 1.5 and 1.9. A continuum of morphologies ranging from relatively clean clusters of nanotubes to amorphous material is observed between these lower and upper limits. High-resolution TEM and Raman spectroscopy revealed nanotube bundles with each nanotube being single-walled with diameters between 0.9 and 1.5 nm.  相似文献   

4.
This paper reports on the results of experimental investigations into the thermal conductivity of GaS and GaSe layered semiconductor crystals in directions parallel and perpendicular to the crystal layers in the temperature range 5–300 K. Specific features of the thermal conductivity of these crystals are analyzed.  相似文献   

5.
Low temperature growth and dimension dependent photoluminescence (PL) efficiency of semiconductor nanowires were investigated with CdS as a model system. The CdS nanowires were prepared with a simple, low temperature metal-organic chemical vapor deposition (MOCVD) process via the vapor–liquid–solid (VLS) mechanism. The low growth temperature of 360 °C was made possible with a newly developed single-source precursor of CdS and by using sputtered Au as the catalyst for the VLS growth. The length and diameter of the nanowires were adjusted by reaction time and sputtering conditions of Au, respectively. Nanowires of up to several μm in length and 20 to 200 nm in diameter were obtained. The PL quantum yield of the nanowires was found to decrease with increasing wire length, but to increase with decreasing wire diameter. This dimension-dependent PL efficiency of one-dimensional nanostructure, unlikely resulting from the quantum size confinement effect, appears to be a new observation that carries application significance. PACS 74.25.Gz; 78.55.Et; 78.67.Lt  相似文献   

6.
Static dark current-voltage characteristics (CVC's), the temperature dependence of electric conductivity [σ(T)], the currents of thermostimulated depolarization (TSD), the spectral distribution of photoconductivity (SDPC) and photoluminescence (PL) have been studied in GaS 〈0.1 at % Co〉 single crystals.The results of complex investigations of CVC's, σ(T) dependences, TSD, the SDPC and PL show that the forbidden gap of GaS 〈0.1 at % Co〉 single crystals exhibits acceptor levels (EV + 0.26 and EV + 0.63 eV).  相似文献   

7.
Theoretical and numerical studies of the electromagnetic properties of the layered semiconductor — dielectric — semiconductor (SDS) structure was carried out. It was shown that the weak damping guide and surface waves may exist in this structure and retardation of surface waves may be several times more than for the semiconductor — dielectric (SD) interface. If this structure contains reflections it leads to the formation of high Q-factor resonance oscillations. It was found that at the beginning of intermode coupling of two surface oscillations in the studied resonance structure, hybrid surface oscillations with near resonance frequencies are formed. Their electromagnetic field components along the wave propagation direction are orthogonal to each other and modulated along the SD interface by orthogonal envelopes.  相似文献   

8.
We use ab initio density-functional calculations to investigate the electronic structure of the bromine-adsorbed carbon nanotubes. When a Br2 molecule is inside the (10,0) carbon nanotube, a trace of electron charge transfers from the nanotube to the Br2 adsorbate, resulting in an increased Br–Br bond length. When the supercell contains two Br2 molecules, total energy calculations reveal the formation of a linear chain of bromine atoms inside the carbon nanotube. Electron transfer from the nanotube to the atomic chains of the bromine adsorbates is much enhanced even in large-diameter nanotubes. We suggest that an exposure of the tip-opened carbon nanotube samples to a modest Br2 partial pressure could result in a strong hole-doping of the nanotube, which makes the semiconducting nanotubes nearly metallic.  相似文献   

9.
Electric field aligned, single-walled carbon nanotubes are grown between electrodes using thermal chemical vapour deposition (CVD) of methane. The growth occurs on a thin film layered catalyst of aluminium, iron and molybdenum patterned on top of electrodes. The nanotubes bridge 10 μm sized electrode gaps and have a typical diameter of less than 2 nm as measured by Raman spectroscopy and atomic force microscopy. We present electrical transport measurements on a directly grown nanotube which shows p-type semiconducting behaviour.  相似文献   

10.
Following the discovery of carbon nanotubes, inorganic fullerene-like nanotubes such as WS2–MoS2, NbS2, TiS2, and BN were reported. Inorganic (non-carbon) nanotubes constitute an important class of nanomaterials with interesting properties and potential applications. As known, efficient hydrogen storage is one key problem in the development of a hydrogen energy system. Hydrogen storage using carbon nanostructures is scientifically interesting and challenging. It thus would be worthwhile to look into hydrogen storage in inorganic nanotubes because the van der Waals gaps between the nanotube layers are potential candidates for hydrogen uptake. Furthermore, the inorganic nanotubes combine two elements, which is different from the pure carbon nanotubes. These may show a novel hydrogen adsorption–desorption mechanism. The present review provides a brief study of hydrogen adsorption on MoS2, TiS2, and BN nanotubes. PACS 81.07.De; 81.07.-b; 81.05.Tp; 68.43.-h  相似文献   

11.
The lasing characteristics of mid-IR type-II “W” [InAs/GaInSb/InAs/AlAsSb] structures are found to correlate strongly with the growth conditions and low-temperature photoluminescence (PL) properties. The highest PL intensities and narrowest PL lines are obtained when the wafers are grown at ≈480–510°C with mixed interface bonds. A number of structures grown at a non-optimal lower temperature (≈425°C) nonetheless yielded lower lasing thresholds, lower internal losses, and longer Shockley-Read lifetimes than any grown previously on the present Riber 32P MBE system. All of the laser spectra display regularly-spaced multiple peaks that are consistent with periodic modulation of the cavity loss due to mode-leakage into the GaSb substrate.  相似文献   

12.
The absorption and photoluminescence spectra of uniaxially (parallel and perpendicular to crystal's “C” axis) deformed layered crystals. GaSe. GaS and InSe are investigated at 5 K. It is shown that the results of low temperature deformation experiments may be interpreted within the model an isolated layer without taking into consideration interlayer interaction.  相似文献   

13.
A comparative study is performed of Schottky barrier structures based on Si and GaAs as photoelements and detectors of electrons with energies of 40 and 60 keV. It is shown that introduction of a dielectric interlayer between the metal and semiconductor 1.5–3 nm thick permits increase in ic and Vx of the structures in both the photodetector and electron count regimes. A complex temperature dependence of structure properties in the electron count regime was found, depending on barrier metal thickness and electron energy.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 76–81, April, 1991.  相似文献   

14.
We present the results of the development of a 275–370 GHz, fixed-tuned double sideband (DSB) receiver based on superconductor-insulator-superconductor (SIS) junction mixer. The mixer block uses a full height rectangular waveguide and employs a novel radial-like probe structure with integrated bias-T. The measured uncorrected receiver noise temperature is 30–50 K corresponding to about 2–3 quantum noise across the full frequency band with an IF from 3.8 to 7.6 GHz. The mixer is to be used on the Atacama Pathfinder EXperiment (APEX) submillimeter telescope in Chile.  相似文献   

15.
姜艳  刘贵立 《物理学报》2015,64(14):147304-147304
碳纳米管作为最先进的纳米材料之一, 在电子和光学器件领域有潜在的应用前景, 因此引起了广泛关注. 掺杂、变形及形成超晶格为调制纳米管电子、光学性质提供了有效途径. 为了理解相关机理, 利用第一性原理方法研究了不同剪切形变下扶手椅型硼氮交替环状掺杂碳纳米管超晶格的空间结构、电子结构和光学性质. 研究发现, 剪切形变会改变碳纳米管的几何结构, 当剪切形变大于12%后, 其几何结构有较大畸变. 结合能计算表明, 剪切形变改变了掺杂碳纳米管超晶格的稳定性, 剪切形变越大, 稳定性越低. 电荷布居分析表明, 硼氮掺杂碳纳米管超晶格中离子键和共价键共存. 能带和态密度分析发现硼氮交替环状掺杂使碳纳米管超晶格从金属转变为半导体. 随着剪切形变加剧, 纳米管超晶格能隙逐渐减小, 当剪切形变大于12%后, 碳纳米管又从半导体变为金属. 在光学性能中, 剪切形变的硼氮掺杂碳纳米管超晶格的光吸收系数及反射率峰值较未受剪切形变的均减小, 且均出现了红移.  相似文献   

16.
Anatase nanotubes were successfully produced via the sol–gel process involving organic titanium precursors and multi-walled carbon nanotubes as template. Controlled heat treatments were carried out in order to remove any solvents and to crystallise the initial amorphous titania coating into anatase. In order to use these structures for catalyst support, platinum particles were formed by the impregnation with hexachloroplatinic acid and subsequent calcination and reduction to obtain a final loading of 4 wt% platinum. This impregnation step was carried out either with the carbon nanotube former still present with subsequent heat treatment to remove the carbonaceous template (sample A) or with the carbon nanotube former already removed (sample B). The materials were characterised by X-ray diffraction, scanning electron microscopy and transmission electron microscopy.  相似文献   

17.
Phenethylammonium-based perovskites, which can be regarded as a semiconductor/insulator multiple quantum well consisting of lead halide semiconductor layers sandwiched between phenethylammonium insulator layers were prepared. To investigate the effects of the electronic state and the orientation of organic insulator layers on the optical properties of layered perovskites, fluorine substituted analogues were also prepared. The structure and optical properties were investigated by the XRD, UV–Vis absorption, and fluorescence measurements. The exciton absorption peak was shifted by the substitution of fluorine atoms in organic ammonium compounds. It became clear that the optical properties of two-dimensional perovskite compounds were controlled by the substitution of fluorine atoms.  相似文献   

18.
The thermal properties of carbon nanotubes are directly related to their unique structure and small size. Because of these properties, nanotubes may prove to be an ideal material for the study of low-dimensional phonon physics, and for thermal management, both on the macro- and the micro-scale. We have begun to explore the thermal properties of nanotubes by measuring the specific heat and thermal conductivity of bulk SWNT samples. In addition, we have synthesized nanotube-based composite materials and measured their thermal conductivity. The measured specific heat of single-walled nanotubes differs from that of both 2D graphene and 3D graphite, especially at low temperatures, where 1D quantization of the phonon bandstructure is observed. The measured specific heat shows only weak effects of intertube coupling in nanotube bundling, suggesting that this coupling is weaker than expected. The thermal conductivity of nanotubes is large, even in bulk samples: aligned bundles of SWNTs show a thermal conductivity of >200 W/m K at room temperature. A linear K(T) up to approximately 40 K may be due to 1D quantization; measurement of K(T) of samples with different average nanotube diameters supports this interpretation. Nanotube–epoxy blends show significantly enhanced thermal conductivity, showing that nanotube-based composites may be useful not only for their potentially high strength, but also for their potentially high thermal conductivity. Received: 17 October 2001 / Accepted: 3 December 2001 / Published online: 4 March 2002  相似文献   

19.
We report charge transport properties such as d.c. conductivity (σDC) and its temperature dependence for composites of poly(methyl methacrylate) (PMMA) and multiwalled carbon nanotubes (MWCNTs). The MWCNTs were synthesized through chemical vapor deposition with Fe or Co as catalyst. The MWCNTs were homogeneously dispersed in PMMA matrix through sonication to prepare MWCNT–PMMA composite films. We controlled mass concentration of MWCNTs in the composites, and the thickness of MWCNT–PMMA composite films was 20–400 μm. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman spectroscopy were used to study structure and homogeneity of the composites. The σDC at room temperature of MWCNT–PMMA composites increased as mass concentration of MWCNTs increased, which followed percolation theory. Electromagnetic interference (EMI) shielding efficiency (SE) of MWCNT–PMMA composites was measured in the frequency range of 50 MHz–3.5 GHz. We observed the increase of EMI SE of MWCNT–PMMA composites with increasing the concentration of MWCNTs.  相似文献   

20.
Multiwalled carbon nanotube (CNT) arrays were grown by catalytic thermal decomposition of acetylene, over Fe-catalyst deposited on Si-wafer in the temperature range 700-750 °C. The growth parameters were optimized to obtain dense arrays of multiwalled CNTs of uniform diameter. The vertical cross-section of the grown nanotube arrays reveals a quasi-vertical alignment of the nanotubes. The effect of varying the thickness of the catalyst layer and the effect of increasing the growth duration on the morphology and distribution of the grown nanotubes were studied. A scotch-tape test to check the strength of adhesion of the grown CNTs to the Si-substrate surface reveals a strong adhesion between the grown nanotubes and the substrate surface. Transmission electron microscopy analysis of the grown CNTs shows that the grown CNTs are multiwalled nanotubes with a bamboo structure, and follow the base-growth mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号